【摘要】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關(guān)概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識(shí)別等腰三角形的有關(guān)邊、角條件
2025-10-31 05:34
【摘要】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2025-08-16 00:54
2025-08-16 01:46
【摘要】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對(duì)稱圖形,
2025-08-05 10:34
【摘要】等腰三角形(第3課時(shí))等腰三角形(第3課時(shí))得分________卷后分________評(píng)價(jià)________1.有____個(gè)角相等的三角形是等腰三角形.簡(jiǎn)述為_(kāi)___.2.在證明時(shí),先假設(shè)命題的結(jié)論____,然后推導(dǎo)出與定義、基本事實(shí)、已有定理或已知
2025-08-01 13:41
【摘要】第13章全等三角形等腰三角形2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS有條邊相等的三角形叫做等腰三角形.自我診斷1.(黔西南中考)已知一個(gè)等腰三角形的兩邊長(zhǎng)分別為3和6,則該等腰三角形的周長(zhǎng)是.等腰三角形的相等.自我診斷2.(江西中考)如圖1
2025-06-13 14:03
【摘要】等腰三角形的判定臨海中學(xué)初二備課組等腰三角形的判定學(xué)習(xí)目標(biāo)自學(xué)指導(dǎo)討論練習(xí)課堂作業(yè)我們?cè)谏弦还?jié)學(xué)習(xí)了等腰三角形的性質(zhì)?,F(xiàn)在你能回答我一些問(wèn)題嗎?一、復(fù)習(xí):1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個(gè)底角相等。(可以簡(jiǎn)稱:等邊對(duì)等角)2、這個(gè)定理
2025-08-01 18:01
【摘要】復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡(jiǎn)稱“在同一個(gè)三角形中,等邊對(duì)等角”;、底邊上的中線和底邊上的高互相重合。簡(jiǎn)稱“等腰三角形三線合一”,對(duì)稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個(gè)三角形
【摘要】等腰三角形第2課時(shí)等腰三角形的判定如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得∠A=∠B.如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?AB0在一個(gè)三角形中,如果有兩個(gè)角相等,那么它們所對(duì)的邊有什么關(guān)系?創(chuàng)設(shè)情景明確目標(biāo)1.理解等腰三角
2025-06-17 13:16
【摘要】有兩條邊相等的三角形叫做等腰三角形腰腰頂角底邊底角底角ABCD(1)已知等腰三角形的底邊與一腰,你能用尺規(guī)作出這個(gè)等腰三角形ABC嗎?(2)如圖2-38,將你做的等腰三角形ABC剪下來(lái)。然后將它對(duì)折,使兩腰AB與AC所在的射線重合,記折痕與底邊BC的交點(diǎn)為D,你發(fā)
2024-12-28 17:43
【摘要】等腰三角形性質(zhì)的應(yīng)用——復(fù)習(xí)課如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對(duì)等角的應(yīng)用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
2025-11-15 15:15
【摘要】八年級(jí)上冊(cè)等腰三角形(第4課時(shí))課件說(shuō)明?本節(jié)課在學(xué)習(xí)了軸對(duì)稱、等邊三角形的性質(zhì)及判定的基礎(chǔ)上,探究直角三角形的一條特殊性質(zhì),它反映了直角三角形中的邊角關(guān)系.本節(jié)課是等邊三角形性質(zhì)的簡(jiǎn)單運(yùn)用,同時(shí)也為九年級(jí)學(xué)習(xí)銳角三角函數(shù)作了一定的知識(shí)儲(chǔ)備.?學(xué)習(xí)目標(biāo):1.探索含30°角
2025-11-15 15:53
【摘要】三幅圖中都有哪種幾何圖形?等腰三角形的“三線合一”性質(zhì)的理解及其應(yīng)用。1.探索并掌握等腰三角形的兩個(gè)性質(zhì)2.會(huì)運(yùn)用等腰三角形的概念和性質(zhì)解決有關(guān)問(wèn)題。學(xué)習(xí)目標(biāo):學(xué)習(xí)重點(diǎn):等腰三角形性質(zhì)及其簡(jiǎn)單應(yīng)用。學(xué)習(xí)難點(diǎn):觀察實(shí)物形成概念有兩條邊相等的三角形叫等腰三角形ABC
【摘要】第20講┃等腰三角形第20講┃考點(diǎn)聚焦考點(diǎn)聚焦考點(diǎn)1等腰三角形的概念與性質(zhì)定義有____相等的三角形是等腰三角形.相等的兩邊叫腰,第三邊為底性質(zhì)軸對(duì)稱性等腰三角形是軸對(duì)稱圖形,有____條對(duì)稱軸定理1等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱為:__________)
2025-07-20 09:12
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-18 12:57