【摘要】勾股定理第十七章勾股定理導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級(jí)數(shù)學(xué)下(RJ)教學(xué)課件第1課時(shí)勾股定理學(xué)習(xí)目標(biāo),了解關(guān)于勾股定理的一些文化歷史背景,會(huì)用面積法來(lái)證明勾股定理,體會(huì)數(shù)形結(jié)合的思想.(重點(diǎn)).(難點(diǎn))
2025-06-12 06:33
【摘要】勾股定理第1課時(shí)勾股定理(一)如果直角三角形的兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.如圖,在△ABC中,∠C=90°.(1)若已知a,b,則斜邊c=;(2)若已知a,c,則b=;(3)若已知c,b,則a=.22
2025-06-12 12:25
【摘要】勾股定理郵票賞析這是1955年希臘曾經(jīng)發(fā)行的紀(jì)念一位數(shù)學(xué)家的郵票。在方格紙上,畫(huà)一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形;并分別以這個(gè)直角三角形的各邊為一邊向三角形外作正方形,計(jì)算以斜邊為一邊的正方形的面積.PQCR如圖,小方格的邊長(zhǎng)為1.(1)你能求出正方形R的面積
2024-11-27 23:31
【摘要】第十七章勾股定理勾股定理第1課時(shí)勾股定理的驗(yàn)證勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a,b,c三條邊滿(mǎn)足的關(guān)系式是.a2+b2=c2知識(shí)點(diǎn)1:勾股定理的認(rèn)識(shí)解:(1)A所代表的正方形的面積為144+81=225.(2)B所代表的正方形的面積為625-400=22
2025-06-16 15:03
【摘要】第2課時(shí)勾股定理(二),也可以表示,數(shù)軸上的點(diǎn)和.一一對(duì)應(yīng).(,,…)的點(diǎn).如圖所示..有關(guān)銳角三角形或鈍角三角形的計(jì)算問(wèn)題也可以轉(zhuǎn)化為含有三角形的計(jì)算問(wèn)題,應(yīng)用勾股定理加以解決,關(guān)鍵在于找出這個(gè)三角形.23無(wú)理數(shù)實(shí)數(shù)
2025-06-12 12:23
【摘要】勾股定理第3課時(shí)【基礎(chǔ)梳理】在數(shù)軸上找表示的點(diǎn)要在數(shù)軸上畫(huà)出表示的點(diǎn),只要畫(huà)出長(zhǎng)為的線(xiàn)段即可.利用勾股定理,長(zhǎng)為的線(xiàn)段是直角邊為正整數(shù)__,__的直角三角形的斜邊.2313131313如圖,在數(shù)軸上找出表示3的點(diǎn)A,則OA=__,過(guò)點(diǎn)A作直線(xiàn)l垂直于O
2025-06-12 12:38
【摘要】第3課時(shí)利用勾股定理作圖與計(jì)算,有的表示,因此,數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)關(guān)系.有理數(shù)無(wú)理數(shù)實(shí)2.當(dāng)直角三角形的兩直角邊長(zhǎng)分別為1,1時(shí),斜邊長(zhǎng)為2,當(dāng)兩直角邊長(zhǎng)分別為2,1時(shí),斜邊長(zhǎng)為,如圖,依此規(guī)律可以畫(huà)出表示長(zhǎng)為4,5,6?的線(xiàn)段.3
2025-06-16 15:14
2025-06-12 21:10
【摘要】勾股定理第3課時(shí)在數(shù)學(xué)中也有這樣一幅美麗的“海螺型”圖案由此可知,利用勾股定理,可以作出長(zhǎng)為21146785101112139161819171415n1111111111111111第七屆國(guó)際
2025-06-18 06:04
2025-06-16 15:37
【摘要】第十七章 勾股定理 勾股定理第1課時(shí) 勾股定理:如果直角三角形的兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么 .?明勾股定理的常用方法: ,如“趙爽弦圖”等.積如圖所示,則面積為S的正方形的邊長(zhǎng)是( ) ?a2+b2=c2
2025-06-18 12:26
2025-06-17 20:59
【摘要】學(xué)練考數(shù)學(xué)八年級(jí)下冊(cè)R感謝您使用本課件,歡迎您提出寶貴意見(jiàn)!
2025-06-20 12:02
【摘要】第十七章 勾股定理 勾股定理第1課時(shí) 勾股定理的認(rèn)識(shí)知識(shí)點(diǎn)1知識(shí)點(diǎn)2勾股定理的證明選項(xiàng)中,不能用來(lái)證明勾股定理的是(??D??)2.【教材延伸】如圖,“趙爽弦圖”是由四個(gè)全等的直角三角形拼成一個(gè)大的正方形,是我國(guó)古代數(shù)學(xué)的驕傲,巧妙地利用面積關(guān)系證明了勾股定理.已
2025-06-15 12:01
【摘要】第2課時(shí) 勾股定理的應(yīng)用知識(shí)點(diǎn)1知識(shí)點(diǎn)2勾股定理的實(shí)際應(yīng)用樹(shù),一棵高10?m,另一棵高4?m,兩樹(shù)相距8?鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行(??B??)?m?m?m?m