【摘要】微積分(一)calculus§微分中值定理§洛必達(dá)法則§用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、和最值§函數(shù)曲線的凹向及拐點(diǎn)§§第四章中值定理及導(dǎo)數(shù)的應(yīng)用微積分(一)calculus§微分中值定理一、引言二、微分中值定
2026-01-11 05:32
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第4章2微積分基本定理課時(shí)作業(yè)北師大版選修2-2一、選擇題1.????-π2π2(1+cosx)dx等于()A.πB.2C.π-2D.π+2[答案]D[分析]利用微積分基本定理求定積分.
2025-11-26 06:27
【摘要】微積分學(xué)基本定理變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為另一方面這段路程可表示為一、問題的提出微積分基本定理三、牛頓—萊布尼茨公式牛頓—萊布尼茨公式微積分基本公式表明:注意求定積分問題轉(zhuǎn)化為求原函數(shù)的問題.例1求原式例2設(shè)
2025-10-31 00:16
【摘要】一、羅爾定理二、拉格朗日中值定理四、小結(jié)思考題三、柯西中值定理第一節(jié)中值定理一、羅爾(Rolle)定理羅爾(Rolle)定理如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),在開區(qū)間),(ba內(nèi)可導(dǎo),且在區(qū)間端點(diǎn)的函數(shù)值相等,即)()(bfaf?,那末在),(ba內(nèi)至少有一點(diǎn))
2025-08-21 12:46
【摘要】本科生畢業(yè)設(shè)計(jì)(論文)微積分基本定理及應(yīng)用Thefundamentaltheoremofcalculousanditsapplication院(系):江西師范大學(xué)科學(xué)技術(shù)學(xué)院數(shù)信系專業(yè)年級(jí):數(shù)學(xué)與應(yīng)用數(shù)學(xué)(師范類)2010級(jí)姓名:
2025-06-20 05:31
【摘要】"福建省長(zhǎng)樂第一中學(xué)2021高中數(shù)學(xué)第一章《微積分基本定理》教案新人教A版選修2-2"一:教學(xué)目標(biāo)知識(shí)與技能目標(biāo)通過實(shí)例,直觀了解微積分基本定理的含義,會(huì)用牛頓-萊布尼茲公式求簡(jiǎn)單的定積分過程與方法通過實(shí)例體會(huì)用微積分基本定理求定積分的方法情感態(tài)度與價(jià)值觀通過微積分基本定
2025-11-26 06:42
【摘要】2013級(jí)微積分(二)總復(fù)習(xí)一、單項(xiàng)選擇題(積分變上限函數(shù)的導(dǎo)數(shù)),,則()(A)(B)(C)(D)非零常數(shù)【另附】設(shè)函數(shù)為連續(xù)奇函數(shù),,則()(A)(B)(C)(D)非零常數(shù)b.導(dǎo)數(shù)
2026-01-05 20:06
【摘要】大學(xué)微積分總復(fù)習(xí)匯總初等函數(shù)一、基本初等函數(shù)1.冪函數(shù))(是常數(shù)???xyoxy2xy?xy?xy?11)1,1(xy1?2.指數(shù)函數(shù))1,0(???aaayxxey?xay?xay)1(?)1(?a)1,0(3.對(duì)數(shù)函數(shù))1,0(log???aaxyaxy
2025-08-05 22:47
【摘要】導(dǎo)數(shù)的應(yīng)用1.函數(shù)的單調(diào)性 (1)利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的增減性 注意:在某個(gè)區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時(shí)f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時(shí)就必須寫f'(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟?、俅_定f(x)的定義域;?、谇髮?dǎo)數(shù);?、塾?/span>
2025-08-08 20:22
【摘要】考點(diǎn)13定積分與微積分基本定理(1)了解定積分的實(shí)際背景,了解定積分的基本思想,了解定積分的概念.(2)了解微積分基本定理的含義.一、定積分1.曲邊梯形的面積(1)曲邊梯形:由直線x=a、x=b(a≠b)、y=0和曲線所圍成的圖形稱為曲邊梯形(如圖①).(2)求曲邊梯形面積的方法與步驟:①分割:把區(qū)間a,b]分成許多小區(qū)間,進(jìn)而把曲邊梯形拆分為一些小曲邊
2025-04-16 08:25
【摘要】1.函數(shù)的單調(diào)性(1)利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的增減性注意:在某個(gè)區(qū)間內(nèi),f39。(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時(shí)f39。(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時(shí)就必須寫f39。(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟①確定f(x)的定義域;
2025-12-08 15:20
【摘要】1微積分輔導(dǎo)要點(diǎn)第一部分函數(shù)函數(shù)是整個(gè)高等數(shù)學(xué)研究的主要對(duì)象,因而成為考核的對(duì)象之一。特別是一元函數(shù)的定義和性質(zhì),其中包括反函數(shù)、復(fù)合函數(shù)、隱函數(shù)、初等函數(shù)和分段函數(shù)的定義和性質(zhì)。一、重點(diǎn)內(nèi)容提要1、函數(shù)定義中的關(guān)鍵要素是定義域與對(duì)應(yīng)法則,這里要特別注意兩點(diǎn):①兩個(gè)函數(shù)只有當(dāng)它們的定義域和對(duì)應(yīng)法則都相同時(shí)
2025-10-11 08:58
【摘要】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【摘要】第5章定積分及其應(yīng)用微積分基本公式習(xí)題解1.設(shè)函數(shù),求,?!窘狻坑深}設(shè)得,于是得,。2.計(jì)算下列各導(dǎo)數(shù):⑴;【解】。⑵;【解】。⑶;【解】。⑷?!窘狻俊?.設(shè)函數(shù)由方程所確定,求?!窘夥ㄒ弧糠匠讨型瓿煞e分即為,亦即為,得知,解出,得,于是得?!窘?/span>
2025-07-26 04:21
【摘要】第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁
2025-03-22 04:31