【摘要】第一篇:相似三角形性質(一)教學反思 類似三角形的本質是第四版第四版第四版第四章第四章內容的第四章。本課的重點是探索類似三角形的本質,并解決類似三角形屬性的簡單實際問題。事實上,在理解類似三角形的基...
2024-10-29 06:16
【摘要】相似三角形復習課教學設計【教學目標】知識與技能:1.復習相似三角形的概念。2.復習相似三角形的性質。3.復習相似三角形的判定。4.復習相似三角形的應用,用相似知識解決一些數(shù)學問題。過程與方法:在梳理全等三角形與相似三角形知識的過程中,感受類比思想,劃歸思想;情感態(tài)度與價值觀:總結圖形相似的有關特征并應用到實際問題的解決中,培養(yǎng)應用數(shù)學的能力。
2025-04-17 07:33
【摘要】學校( 九?。┠昙墸ā?shù)學 )學案主備教師:審核人:日期:累計課時課題第周第課時課型新授課學習目標與重難點學習目標:.“平行線分線段成比例定理”、“平行出相似”定理。重點:“平行線分線段成比例定理”、“平行出相似”定理。難點:“平行線分線段成比例定理”、“平行出相似”定理。一、復習引入1、相似
2024-08-27 16:45
【摘要】......相似三角形的應用一.選擇題(共8小題)1.如圖,在同一時刻,,一棵大樹的影長為5米,則這棵樹的高度為( ?。〢. B. C. D.2.如圖,小明在A時測得某樹的影長為1m,B時又測得該樹的影長為4
2025-06-28 20:00
【摘要】相似三角形的應用一.選擇題(共8小題)1.如圖,在同一時刻,,一棵大樹的影長為5米,則這棵樹的高度為( ?。〢. B. C. D.2.如圖,小明在A時測得某樹的影長為1m,B時又測得該樹的影長為4米,若兩次日照的光線互相垂直,樹的高度為( ?。〢.2m B.m C.m D.m3.如圖所示,一張等腰三角形紙片,底邊長18cm,底邊上的高長18cm,現(xiàn)沿底邊
2024-08-14 09:02
【摘要】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動點(與C、D不重合).使得三角形的直角頂點與P點重合,并且一條直角邊始終經(jīng)過點B,另一直角邊與正方形的某一邊所在直線交于點E.探究(1)觀察操作猜想哪一個三角形也△.(2)當點P位于CD的中點時,你得到的三角形與△BPC的周長比是多少?
2024-08-13 03:40
【摘要】官方網(wǎng)站:相似三角形及其性質一、課堂講解知識點1、三角對應相等,三邊對應成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質,也是三角形相似的判定方法。注意
2025-04-17 07:51
【摘要】......個性化輔導授課案教師:盧天明學生:時間2016年月日時段相似三角形的判定教學目
2025-04-17 07:43
【摘要】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質:基本性質:ac=bd1、可以把比例式與等積式互
2025-03-25 06:30
【摘要】1.如圖,在△ABC中,D是BC上一點,E是AD上一點,且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點C的對應點為C1.(1)當AC1⊥BC時,CD的長是多少?(2)設C
2025-03-25 06:32
【摘要】相似三角形的判定與性質練習一.選擇題(共14小題)1.(2011?義烏市)如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交CE于點G,連接BE.下列結論中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD?AE=EF?CG;
【摘要】......相似三角形性質與判定的練習知識點:相似三角形的對應角相等,對應邊成比例,對應線段的比等于相似比。一、相似三角形性質的應用,有一塊呈三角形形狀的草坪,其中一邊的長是20m,在
2025-03-25 06:31
【摘要】........相似三角形的性質及應用練習卷一、填空題1、已知兩個相似三角形的相似比為3,則它們的周長比為;2、若△ABC∽△A′B′C′,且,△ABC的周長為12cm,則△A′B′C′的周長為;3、如圖1,
【摘要】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內容是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)內容。在此之前,學生已學習了線段的比,形狀相同的圖形及相似多邊形
2024-08-29 19:21
【摘要】相似三角形對應角相等,對應邊成比例的三角形叫相似三角形.三角形相似判定:,對應邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。1:兩角對應相等,兩三角形相似。2:兩邊對應成比例且夾角相等,兩三角形相似。
2024-11-09 12:54