【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件26《平面向量的坐標(biāo)表示與運(yùn)算》?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標(biāo)表示要點(diǎn)·疑點(diǎn)·考點(diǎn)
2024-11-10 00:27
【摘要】ykiA(x,y,z)Ojxz重慶市萬州分水中學(xué)高中數(shù)學(xué)選修2-1《空間向量的坐標(biāo)表示》教案?jìng)湔n時(shí)間教學(xué)課題教時(shí)計(jì)劃1教學(xué)課時(shí)1教學(xué)目標(biāo)1.能用坐標(biāo)表示空間向量,掌握空間向量的坐標(biāo)運(yùn)算;2.會(huì)根據(jù)向量的坐標(biāo)判斷兩個(gè)空間向量平行。重
2024-11-20 00:30
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角(教案)教學(xué)目標(biāo)1.知識(shí)目標(biāo):⑴掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算;⑵掌握平面向量的模的坐標(biāo)公式以及平面內(nèi)兩點(diǎn)間的距離公式;⑶掌握兩個(gè)平面向量的夾角的坐標(biāo)公式;⑷能用平面向量數(shù)量積的坐標(biāo)公式判斷兩個(gè)平面向量的垂直關(guān)系;2.能力目標(biāo):⑴培養(yǎng)學(xué)生的動(dòng)手能力和探索能力;⑵通過平面向量數(shù)量積的數(shù)與
2025-04-17 01:40
【摘要】課題.3空間向量運(yùn)算的坐標(biāo)表示學(xué)習(xí)目標(biāo):知識(shí)與技能掌握空間向量加法、減法、數(shù)乘、數(shù)量積運(yùn)算的坐標(biāo)表示以及向量的長(zhǎng)度、夾角公式的坐標(biāo)表示,并能初步應(yīng)用這些知識(shí)解決簡(jiǎn)單的立體幾何問題.過程與方法①通過將空間向量運(yùn)算與熟悉的平面向量的運(yùn)算進(jìn)行類比,使學(xué)生掌握空間向量運(yùn)算的坐標(biāo)表示,滲透類比的數(shù)學(xué)方法;
2024-12-03 00:16
【摘要】空間向量運(yùn)算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運(yùn)算的規(guī)律;,判斷兩個(gè)向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2024-11-19 23:24
【摘要】平面向量的坐標(biāo)運(yùn)算平面向量共線的坐標(biāo)表示問題提出?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).,使得向量具有代數(shù)特征,并
2025-07-19 00:10
【摘要】1思考1數(shù)量積的性質(zhì)思考2數(shù)量積的運(yùn)算律引入數(shù)量積運(yùn)算定義課堂練習(xí)空間向量的數(shù)量積運(yùn)算2022-11-052空間向量的數(shù)量積運(yùn)算(一)SF?W=|F||s|cos?根據(jù)功的計(jì)算,我們定義了平面兩向量的數(shù)量積運(yùn)算.一旦定義出來,我們發(fā)現(xiàn)這種運(yùn)算非常有用,它能解
2025-07-18 12:59
【摘要】第二章平面向量第二章2.3平面向量的基本定理及坐標(biāo)表示第二章2.平面向量的正交分解及坐標(biāo)表示2.平面向量的坐標(biāo)運(yùn)算課前自主預(yù)習(xí)課堂典例講練課后強(qiáng)化作業(yè)課前自主預(yù)習(xí)溫故知新1.所謂的共線(平行)向量是指________,向量共線定理的內(nèi)容是__
2025-06-19 16:22
【摘要】《平面向量共線的坐標(biāo)表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標(biāo)運(yùn)算延伸的作用,它是在學(xué)生對(duì)平面向量的基本定理有了充分的認(rèn)識(shí)和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標(biāo)表示則為用“數(shù)”的運(yùn)算處理“形”的問題搭建了橋梁,同時(shí)也為定比分點(diǎn)坐標(biāo)公式和中點(diǎn)坐標(biāo)公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標(biāo)表示,對(duì)立體幾何教材也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
【摘要】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運(yùn)算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點(diǎn)、終點(diǎn)的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個(gè)向量a=(x1,y
2024-11-28 00:13
【摘要】預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引3.1空間向量及其運(yùn)算預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引
2025-07-20 07:00
【摘要】空間向量運(yùn)算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】1.掌握空間向量的長(zhǎng)度公式、夾角公式、兩點(diǎn)間距離公式、中點(diǎn)坐標(biāo)公式;2.會(huì)用這些公式解決有關(guān)問題.【重點(diǎn)難點(diǎn)】空間向量的長(zhǎng)度公式、夾角公式、兩點(diǎn)間距離公式、中點(diǎn)坐標(biāo)公式【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P95~P97,找出疑惑之處)復(fù)習(xí)1:設(shè)在平面直角坐標(biāo)系中,A(
2024-11-19 20:38
【摘要】導(dǎo)入新課復(fù)習(xí)上一節(jié)課,我們借助“類比思想”把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.(1)加法法則及減法法則平行四邊形法則或三角形法則.(2)運(yùn)算律加法交換律及結(jié)合律.兩個(gè)空間向量的加、減法與兩個(gè)平面向量的加、減法實(shí)質(zhì)是
2025-06-12 19:01
【摘要】,第三章空間向量與立體幾何,3.1空間向量及其運(yùn)算空間向量運(yùn)算的坐標(biāo)表示,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六:點(diǎn)三...
2025-10-13 19:06
【摘要】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2025-01-22 01:08