【摘要】1《線性代數(shù)與空間解析幾何》哈工大數(shù)學(xué)系代數(shù)與幾何教研室王寶玲線性方程組第五章2?齊次方程組?非齊次方程組?方程組在幾何中的應(yīng)用本章的主要內(nèi)容300)0(nnnnmmmnnaxaxaxaxaxaxaxax
2024-10-16 21:32
【摘要】第一節(jié)線性方程組的消元法第二節(jié)矩陣的初等變換第一章線性方程組的消元法和矩陣的初等變換第一節(jié)線性方程組的消元法一、線性方程組的基本概念二、消元法解線性方程組1、線性方程組的初等變換2、利用初等變換解一般線性方程組一、線性方程組的基本概念1.線性方程組的
2025-08-05 10:44
【摘要】§非線性方程組的迭代解法§預(yù)備知識(shí)一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2025-07-24 07:09
【摘要】線性方程組的解法討論畢業(yè)論文目錄1引言 12文獻(xiàn)綜述 1國(guó)內(nèi)外研究現(xiàn)狀 1國(guó)內(nèi)外研究現(xiàn)狀評(píng)價(jià) 2提出問(wèn)題 23線性方程組的概念及解的基礎(chǔ)理論 2齊次線性方程組 3非齊次線性方程組 64線性方程組的解法 9高斯消元法 9用克拉默(Cramer)法則解線性方程組 10LU分解法 11逆矩
2025-06-28 21:06
【摘要】一、矩陣的初等變換定義對(duì)矩陣進(jìn)行下列三種變換,稱為矩陣的初等變換:(1)交換矩陣的任意兩行;(2)矩陣的任意一行乘以非零數(shù)k;(3)矩陣的任意一行乘以k加到另外一行。、、行階梯形矩陣,特點(diǎn)是可以畫(huà)一條階梯線,線的左下方元素全為零;行簡(jiǎn)化階梯形矩陣,其非零行的首非零元為1,且非零元所在列的其它元素都為零。二
2025-06-07 16:29
【摘要】第六章線性方程組的迭代解法§1向量和矩陣的范數(shù)向量的范數(shù)矩陣的范數(shù)§2迭代解法與收斂性迭代解法的構(gòu)造迭代解法的收斂性條件§3常用的三種迭代解法Jacobi迭代法Gauss-Seide
2025-07-21 00:10
【摘要】線性方程組解題方法技巧與題型歸納題型一線性方程組解的基本概念【例題1】如果α1、α2是方程組的兩個(gè)不同的解向量,則a的取值如何?解:因?yàn)棣?、α2是方程組的兩個(gè)不同的解向量,故方程組有無(wú)窮多解,r(A)=r(Ab)<3,對(duì)增廣矩陣進(jìn)行初等行變換:易見(jiàn)僅當(dāng)a=-2時(shí),r(A)=r(Ab)=2<3,故知a=-2?!纠}2】設(shè)A是秩為3的5×4
2025-08-07 11:18
【摘要】1第三章解線性方程組的迭代法?Jacobi迭代法?Gauss-Seidel迭代法?迭代法的收斂條件(充要條件,充分條件)bAx?求?迭代法概述2?迭代法概述gMxxbAx????等價(jià)線性方程組取初始向量x(0)?Rn,構(gòu)造如下單步定常線性迭代公式),2,1,0(
2024-10-16 21:26
【摘要】第五節(jié)齊次線性方程組一.齊次線性方程組()有非零解的充要條件二.齊次線性方程組解的性質(zhì)三.基礎(chǔ)解系四.解的結(jié)構(gòu)五.練習(xí)題,][Ansija??系數(shù)矩陣02211????nnxxx????1.齊次線性方程組()有非零解的充要條件或向量形式???????????
2025-08-05 10:50
【摘要】復(fù)習(xí):關(guān)于線性方程組的兩個(gè)重要定理:1)n個(gè)未知數(shù)的齊次線性方程組Ax=0有非零解的充分必要條件是系數(shù)矩陣的秩R(A)n.2)n個(gè)未知數(shù)的非齊次線性方程組Ax=b有解的充分必要條件是系數(shù)矩陣的秩R(A)等于增廣矩陣的秩R(B).且當(dāng)R(A)=R(B)
2025-07-18 19:12
【摘要】常系數(shù)線性方程組基解矩陣的計(jì)算董治軍(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖238000)摘要:微分方程組在工程技術(shù)中的應(yīng)用時(shí)非常廣泛的,不少問(wèn)題都?xì)w結(jié)于它的求解問(wèn)題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無(wú)法通過(guò)積分得到的,但當(dāng)系數(shù)矩陣是常數(shù)矩陣時(shí),可以通過(guò)方法求出基解矩陣,這時(shí)可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對(duì)應(yīng)用最廣泛的常系數(shù)
2025-06-23 07:32
【摘要】n維向量與線性方程組主要內(nèi)容:(1)向量的線性相關(guān)性(2)向量組的最大無(wú)關(guān)組與秩(3)線性方程組解的結(jié)構(gòu)與通解定義:定義:n維行向量(或行陣):n維列向量列向量(或列矩陣列矩陣):常用的記號(hào)是希臘字母常用的記號(hào)是希臘字母如果向量的元素如果向量的元素在復(fù)數(shù)域上在復(fù)數(shù)域上,全體,全體n維向量
2025-07-17 13:23
【摘要】非線性方程(組)求解?非線性方程(組)數(shù)值求解基本原理?多項(xiàng)式求根函數(shù)-roots?非線性方程求解函數(shù)-fzero?非線性方程組求解函數(shù)-fsolve復(fù)習(xí)與練習(xí)按以下要求編寫(xiě)一個(gè)函數(shù)計(jì)算的值,其中x0時(shí),y=;x0時(shí),y=2/x
2024-10-13 16:48
【摘要】線性代數(shù)第四章第四章線性方程組與向量組的線性相關(guān)性?本章教學(xué)內(nèi)容?§1消元法與線性方程組的相容性?§2向量組的線性相關(guān)性?§3向量組的秩矩陣的行秩與列秩?§4線性方程組解的結(jié)構(gòu)§1消元法與線性方程組的相容性?本節(jié)教學(xué)內(nèi)容?
2024-12-08 01:17
【摘要】數(shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS第6章解線性方程組的迭代法直接法得到的解是理論上準(zhǔn)確的,但是我們可以看得出,它們的計(jì)算量都是n3數(shù)量級(jí),存儲(chǔ)量為n2量級(jí),這在n比較小的時(shí)候還比較合適(n400
2025-07-20 06:24