【摘要】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【摘要】微積分基本概念第一章函數(shù)、極限連續(xù)重點:函數(shù)性質(zhì)與函數(shù)的圖形函數(shù)是微積分的研究對象,因此在課程的開始,要先對函數(shù)部分加以復(fù)習(xí),要求對函數(shù)的概念、表示方法、,故需要介紹一下,因為不考試,故不作復(fù)習(xí)重點,不作任何要求,也不做練習(xí)題.一、函數(shù)(一)函數(shù)的概念1.函數(shù)的定義【】設(shè)在某一變化過程中有兩個變量和,若對非空集合中的每一點,都按照某一對應(yīng)規(guī)則,有惟一確定
2025-06-29 13:47
【摘要】第4講定積分與微積分的基本定理★知識梳理★1、定積分概念定積分定義:如果函數(shù)在區(qū)間上連續(xù),用分點,將區(qū)間等分成幾個小區(qū)間,在每一個小區(qū)間上任取一點,作和,當(dāng)時,上述和無限接近某個常數(shù),這個常數(shù)叫做函數(shù)在區(qū)間上的定積分,記作,即,這里、分別叫做積分的下限與上限,區(qū)間叫做積分區(qū)間,函數(shù)叫做被積函數(shù),叫做積分變量,叫做被積式.2、定積分性質(zhì)(1);
2025-08-17 05:56
【摘要】微積分基本定理變速直線運動中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運動中位移為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),求物體在這段時間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2025-08-16 01:33
【摘要】一定積分計算的基本公式設(shè)函數(shù))(xf在區(qū)間],[ba上連續(xù),并且設(shè)x為],[ba上的一點,?xadxxf)(考察定積分??xadttf)(記()().xaxftdt???積分上限函數(shù)如果上限x在區(qū)間],[ba上任意變動,則對于每一個取定的x值,定積
2025-04-29 06:28
【摘要】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2025-01-15 15:12
【摘要】《微積分基本定理》教案[來源:中國%@^教*育~出版網(wǎng)]一、教學(xué)目標(biāo)[中@*國&教^育出版#網(wǎng)]通過實例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分二、教學(xué)重難點重點通過探究變速直線運動物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,并能正確運用基本定理計算簡單的
2024-12-07 21:43
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【摘要】微積分基本知識第一章、極限與連續(xù)一、數(shù)列的極限1.?dāng)?shù)列定義:按著正整數(shù)的順序排列起來的無窮多個數(shù)叫數(shù)列,記作,并吧每個數(shù)叫做數(shù)列的項,第n個數(shù)叫做數(shù)列的第n項或通項界的概念:一個數(shù)列,若,對,都有,則稱是有界的:若不論有多大,總,,則稱是無界的若,則稱為的下界,稱為的上界有界的充要條件:既有上界,又有下界2.?dāng)?shù)列極限的概念
2025-06-20 03:33
【摘要】微積分學(xué)基本定理與定積分的計算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測捷蛘錙張入痖儲琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2024-10-19 18:07
【摘要】返回后頁前頁返回后頁前頁§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【摘要】旋轉(zhuǎn)體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【摘要】微積分Ⅰ1第九章重積分§二重積分的計算一、利用直角坐標(biāo)計算二重積分二、利用極坐標(biāo)計算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
【摘要】問題21?xdx???解決方法改變中間變量的設(shè)置方法.過程令txsin?,costdtdx??21xdx???21sincosttdt??2costdt?????2、第二類換元法1cos22tdt???設(shè)法把根號去掉定理2()()0
2025-01-19 11:22