【摘要】【成才之路】2021-2021學年高中數(shù)學第1章第2課時導數(shù)公式表及數(shù)學軟件的應用課時作業(yè)新人教B版選修2-2一、選擇題1.若f(x)=cosπ4,則f′(x)為()A.-sinπ4B.sinπ4C.0D.-cosπ4[答案]C[解析]f(x)=cosπ4
2024-12-03 11:28
【摘要】【成才之路】2021-2021學年高中數(shù)學第1章第3課時導數(shù)的實際應用課時作業(yè)新人教B版選修2-2一、選擇題1.某汽車運輸公司,購買了一批豪華大客車投入客運,據(jù)市場分析,每輛客車營運的總利潤y(萬元)與營運年數(shù)x(x∈N+)滿足y=-x2+12x-25,則每輛客車營運多少年可使其營運年平均利潤最大(
【摘要】【成才之路】2021-2021學年高中數(shù)學第1章第2課時利用導數(shù)研究函數(shù)的極值課時作業(yè)新人教B版選修2-2一、選擇題1.已知函數(shù)f(x)在點x0處連續(xù),下列命題中正確的是()A.導數(shù)為零的點一定是極值點B.如果在點x0附近的左側(cè)f′(x)0,右側(cè)f′(x)0,那么f(x0)是極小
【摘要】導數(shù)及其應用第一章定積分與微積分基本定理第2課時微積分基本定理第一章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習火箭要把運載物發(fā)送到預定軌道是極其復雜的過程,至少涉及變力做功問題,有諸如“曲邊梯形”面積計算、變速直線運動的位移計算等問題,應如何解決?能否將
2024-11-18 01:21
【摘要】導數(shù)公式【教學目標】能根據(jù)導數(shù)的定義,求函數(shù)cy?,xy?,2xy?,xy1?,xy?的導數(shù)。能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)。【教學重點】常數(shù)函數(shù)、冪函數(shù)的導數(shù)【教學難點】利用公式求導一、課前預習(閱讀教材14--17頁,填寫知識點)__
2024-11-19 10:27
【摘要】【成才之路】2021-2021學年高中數(shù)學第1章第1課時函數(shù)的平均變化率課時作業(yè)新人教B版選修2-2一、選擇題1.在表達式fx0+Δx-fx0Δx中,Δx的值不可能()A.大于0B.小于0C.等于0D.大于0或小于0[答案]C[解析]Δx可正,可
【摘要】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)
2024-11-18 15:23
【摘要】【成才之路】2021-2021學年高中數(shù)學第1章第3課時導數(shù)的幾何意義課時作業(yè)新人教B版選修2-2一、選擇題1.設f′(x0)=0,則曲線y=f(x)在點(x0,f(x0))處的切線()A.不存在B.與x軸平行或重合C.與x軸垂直D.與x軸斜交[答案]B[解
【摘要】【成才之路】2021-2021學年高中數(shù)學第3章第1課時復數(shù)的加法與減法課時作業(yè)新人教B版選修2-2一、選擇題1.已知z1=3-4i,z2=-5+2i,z1、z2對應的點分別為P1、P2,則P2P1→對應的復數(shù)為()A.-8+6iB.8-6iC.8+6iD.-2
2024-11-29 12:04
【摘要】【成才之路】2021-2021學年高中數(shù)學第2章3計算導數(shù)課時作業(yè)北師大版選修2-2一、選擇題1.已知f(x)=x2,則f′(3)等于()A.0B.2xC.6D.9[答案]C[解析]f′(x)=2x?f′(3)=6.2.(2021·泰安模擬
2024-12-05 01:48
【摘要】復習:合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠?qū)щ?銅是金屬,
2024-11-18 15:24
【摘要】反證法一.反證法證明命題“設p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設矛盾,因此假設p不是偶數(shù)不成立,從而證明
【摘要】-歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個
【摘要】演繹推理演繹推理課時安排:兩課時課型:新授課教學目標:一、知識與技能:了解演繹推理的含義,能利用“三段論”進行簡單的推理。二、過程與方法:結(jié)合具體實例,了解演繹推理與合情推理的聯(lián)系和差異。三、情感態(tài)度價值觀:
【摘要】1、觀察1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,……由上述具體事實能得到怎樣的結(jié)論?2、在平面內(nèi),若a⊥c,b⊥c,則a//b.類比地推廣到空間,你會得到什么結(jié)論?并判斷正誤。正確錯誤(可能相交)