【摘要】離散型隨機變量的方差一般地,若離散型隨機變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數學期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機變量的均值的定義
2025-11-09 08:45
【摘要】隨機變量及其概率分布一、學習目標,了解隨機變量及離散型隨機變量的意義,理解取有限值的離散型隨機變量及其概率分布的概念.,認識概率分布對于刻畫隨機現象的重要性.重點難點:理解離散型隨機變量及其概率分布的概念與求法.二、課前自學10株樹苗,成活的樹苗數X是0,1,?,10中的某個數.,向上的點數Y
2024-12-05 09:27
【摘要】§2.3離散型隨機變量的均值與方差§2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的
2025-11-10 19:35
【摘要】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀:
2025-11-26 06:38
【摘要】量的分布列(1)一個試驗如果滿足下述條件:(1)試驗可以在相同的條件下重復進行;(2)試驗的所有結果是明確的且不止一個;(3)每次試驗總是出現這些結果中的一個,但在試驗之前卻不能肯定這次試驗會出現哪一個結果。這樣的試驗就叫做一個隨機試驗,也簡稱試驗。隨機試驗一、復習引入:例(1)某人射擊一
2025-10-03 17:09
【摘要】第二章,隨機變量及其分布,第一頁,編輯于星期六:點三十五分。,2.3離散型隨機變量的均值與方差,2.3.2離散型隨機變量的方差,第二頁,編輯于星期六:點三十五分。,課前教材預案,課堂深度拓展,課末隨堂...
2025-10-13 18:57
【摘要】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀
2025-11-09 15:23
【摘要】離散型隨機變量的期望1、什么叫n次獨立重復試驗?一.復習其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構成,且每次試驗互相獨立完成,每次試驗的結果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
【摘要】學案5離散型隨機變量及其分布列離散型隨機變量及其分布列布列的概念,認識分布列刻畫隨機現象的重要性,會求某些取有限個值的離散型隨機變量的分布列.,并能進行簡單應用.求簡單隨機變量的分布列,以及由此分布列求隨機變量的期望與方差.這部分知識綜合性強,涉及排列、組合、二項式定理和概率,仍會以解答題形式出現,以
2025-06-12 18:50
【摘要】選修2-3第二章第2課時一、選擇題1.已知隨機變量X的分布列為:P(X=k)=12k,k=1、2、?,則P(2<X≤4)=()A.316B.14C.116D.516[答案]A[解析]P(2<X≤4)=P(X=3)+P(X=4)=12
2025-11-26 06:40
【摘要】隨機變量及其概率分布(1)教學目標(1)在對具體問題的分析中,了解隨機變量、離散型隨機變量的意義,理解取有限值的離散型隨機變量及其概率分布的概念;(2)會求出某些簡單的離散型隨機變量的概率分布,認識概率分布對于刻畫隨機現象的重要性;(3)感受社會生活中大量隨機現象都存在著數量規(guī)律,培養(yǎng)辨證唯物主義世界觀.教學重點,難點(
2025-11-11 00:26
【摘要】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數,在它附近擺動,這時就把這個常數叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-06 16:34
【摘要】1.離散型隨機變量的分布列(1)離散型隨機變量的分布列若離散型隨機變量X可能取的不同值為x1,x2,…,xi,…xn,X取每一個值xi(i=1,2,…,n)的概率P(X=xi)=pi,則表基礎知識梳理Xx1x2?xi?xnP??p1p2pipn稱為離散型隨機變量
2025-11-01 00:24