【摘要】ξ可取-1,0,1(且ξ為離散型隨機變量)解:設黃球的個數為n,依題意知道綠球個數為2n,紅球個數為4n,盒中球的總數為7n。p10-1(2)并分別求這三種情況下的概率例1一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數是綠球個數的兩倍,黃球個數是綠球的一半,現(xiàn)從該盒中隨機取出一個球,
2025-10-31 12:29
【摘要】量的方差高二數學選修2-3一、復習回顧1、離散型隨機變量的數學期望nniipxpxpxpxEX????????22112、數學期望的性質bXaEbaXE???)()(P1xix2x······1p2pip···&
2025-11-08 19:27
【摘要】§2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當地定義隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:隨機變
2025-11-26 06:39
【摘要】§2離散型隨機變量研究一個離散型隨機變量不僅要知道它可能取值而且要知道它取每一個可能值的概率.一.概率分布:設離散型隨機變量的可能取值是有限個或可數個值,設的可能取值: 為了完全描述隨機變量,只知道X的可能取值是很不夠的,還必須知道取各種值的概率,也就是說要知道下列一串概率的值: 記 ,將的可能取值及相應的既率成下表
2025-08-23 11:53
【摘要】§2.1.2離散型隨機變量的分布列教學目標:知識與技能:會求出某些簡單的離散型隨機變量的概率分布。過程與方法:認識概率分布對于刻畫隨機現(xiàn)象的重要性。情感、態(tài)度與價值觀:認識概率分布對于刻畫隨機現(xiàn)象的重要性。教學重點:離散型隨機變量的分布列的概念教學難點:求簡單的離散型隨機變量的分布列授課類型:新授課
2025-11-25 23:44
【摘要】§2.3離散型隨機變量的均值與方差§2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的
2025-11-10 19:35
【摘要】第二章,隨機變量及其分布,第一頁,編輯于星期六:點三十五分。,2.2二項分布及其應用,2.2.3獨立重復試驗與二項分布,第二頁,編輯于星期六:點三十五分。,課前教材預案,課堂深度拓展,課末隨堂演練,課...
2025-10-13 18:56
【摘要】離散型隨機變量的分布列我開始學習解答概率分布列問題時,經常出錯.后來通過慢慢摸索,發(fā)現(xiàn)大部分概率分布列問題在解答時需要用到分類討論的思想,下面談談自己的粗淺體會.1、對隨機變量?的取值進行分類例15封不同的信,投入三個不同的信箱,且每封信投入每個信箱的機會均等,?是三個箱子中放有信件數目的最大值.求?的分布列.分析:三個箱
2025-11-23 10:00
【摘要】第九節(jié)離散型隨機變量的均值與方差、正態(tài)分布高考成功方案第一步高考成功方案第二步高考成功方案第三步高考成功方案第四步第十章計數原理、概率、隨機變量及分布列返回考綱點擊1.理解取有限個值的離散型隨機變量均值、方
2025-04-30 03:54
【摘要】2.3.1離散型隨機變量的期望教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量的均值或期望。情感、態(tài)度與價值觀
2025-11-29 22:39
【摘要】.,"";,,.,.,績的方差需要考察這個班數學成則兩極分化績是否某班同學數學成要了解很重要的是看平均分總體水平數學測驗中的要了解某班同學在一次例如數字特征趣的是隨機變量的某些有時我們更感興但在實際問題中概率機變量相關事件的分布列確定與該隨可以由它的概率對于離散型隨機變量?,1:2:3kg/36,kg/2
2025-06-21 08:53
【摘要】第二節(jié)離散隨機變量及其分布律?????xxkkpxXPxF}{)(分布函數分布律}{kkxXPp??離散型隨機變量的分布函數離散型隨機變量分布律與分布函數的關系.)(}{)(?????????xxxxkkkkxXPpxXPxF二、常見離散型隨機變量的概率分布1、兩
2025-05-13 21:14
【摘要】離散型隨機變量的均值與方差教學目標(1)進一步理解均值與方差都是隨機變量的數字特征,通過它們可以刻劃總體水平;(2)會求均值與方差,并能解決有關應用題.教學重點,難點:會求均值與方差,并能解決有關應用題.教學過程一.問題情境復習回顧:1.離散型隨機變量的均值、方差、標準差的概念和意義,以及計算公式.2.練習
2025-11-30 04:43
【摘要】一、復習引入1、離散型隨機變量ξ的期望Eξ=x1p1+x2p2+…xnpn+…2、滿足線性關系的離散型隨機變量的期望E(aξ+b)=aEξ+b3、服從二項分布的離散型隨機變量的期望Eξ=np即若ξ~B(n,p),則4、服從幾何分布的隨機變量的期望若p(ξ=k)=
2025-11-02 08:47
【摘要】《離散型隨機變量的均值與方差-期望值》教學目標?1了解離散型隨機變量的期望的意義,會根據離散型隨機變量的分布列求出期望.?⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量的期望?教學重點:離散型隨機變量的期望的概念?教學難點:根據離
2025-11-09 12:12