【摘要】1.兩角和與差的三角函數(shù);;。2.二倍角公式;;。3.三角函數(shù)式的化簡常用方法:①直接應(yīng)用公式進(jìn)行降次、消項;②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。(2)化簡要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)。(1)降冪公式;;。(2)輔助角公式,。
2025-03-24 05:42
【摘要】......《三角恒等變換練習(xí)題》一、選擇題(本大題共6小題,每小題5分,滿分30分)1.已知,,則()A.B.C.D.2.函數(shù)的最小正周期是()A.B
2025-06-23 03:59
【摘要】......三角恒等變換章末復(fù)習(xí)一、選擇題1.函數(shù)的最小正周期是().A.B.C.D.2.已知,,則()A.B.
2025-04-16 12:50
【摘要】范文范例參考《三角恒等變換練習(xí)題》一、選擇題(本大題共6小題,每小題5分,滿分30分)1.已知,,則()A.B.C.D.2.函數(shù)的最小正周期是()A.B.C.D.3.在△ABC中,,則△ABC為()A.銳角三角形B.直角三角形
2025-06-23 04:03
【摘要】......簡單的三角恒等變換基礎(chǔ)鞏固強(qiáng)化1.(文)已知等腰三角形頂角的余弦值等于,則這個三角形底角的正弦值為( )A. B.-C. D.-[答案] C[解析] 設(shè)該等腰三角形的頂角為α,底角為β,則有α+2β=π,β=-,0,∵2cos2-1=cosα,∴sinβ=sin(-
2025-06-26 19:52
【摘要】知識與方法熱點與突破審題與答題常考問題7三角恒等變換與解三角形知識與方法熱點與突破審題與答題[真題感悟][考題分析]知識與方法熱點與突破審題與答題1.兩角和與差的正弦、余弦、正切公式(1)sin(α±β)=sinαcosβ±cosαsinβ.
2025-08-05 06:08
【摘要】《三角恒等變換練習(xí)題》一、選擇題(本大題共6小題,每小題5分,滿分30分)1.已知,,則()A.B.C.D.2.函數(shù)的最小正周期是()A.B.C.D.3.在△ABC中,,則△ABC為()A.銳角三角形B.直角三角形C.鈍角三角形D.
2025-06-24 20:23
【摘要】三角恒等變換課題三角恒等變換教學(xué)目標(biāo)1、掌握和差角公式、二倍角公式的推導(dǎo)方法與記憶技巧,并能熟練運用此類公式。2、能夠熟練進(jìn)行三角恒等變換(如:化簡、求值)重點、難點重點:三角恒等變換;難點:三角恒等變換的應(yīng)用考點及考試要求1、兩角和與差的正弦、余弦、正切公式。2、二倍角的正弦、余弦、正切公式3、運用相關(guān)公式進(jìn)行簡單的三角恒等變換
【摘要】 兩角和與差的正弦、余弦和正切基礎(chǔ)梳理1.兩角和與差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β;(3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_
2025-06-23 18:30
【摘要】范文范例參考三角恒等變換專題復(fù)習(xí)教學(xué)目標(biāo):1、能利用單位圓中的三角函數(shù)線推導(dǎo)出的正弦、余弦、正切的誘導(dǎo)公式;2、理解同角三角函數(shù)的基本關(guān)系式:;3、可熟練運用三角函數(shù)見的基本關(guān)系式解決各種問題。教學(xué)重難點:可熟練運用三角函數(shù)見的基本關(guān)系式解決各種問題【基礎(chǔ)知識】一、同角的三大關(guān)系:①倒數(shù)關(guān)系tan?cot=1
【摘要】范文范例參考20170924階測卷:三角恒等變換基礎(chǔ)題型姓名:________________分?jǐn)?shù):________________一.選擇題(共20小題,每小題5分)時間60分鐘4.已知sin2α=,則cos2()=( ?。〢.﹣ B. C.﹣ D.5.若,則cos(π﹣2α)=( ?。〢. B. C. D.6.已知sin(α+)+si
【摘要】2011年——2016年高考題專題匯編專題4三角函數(shù)、三角恒等變換三角恒等變換1、(16年全國3文)若,則cos2θ=(A)(B)(C)(D)2、(16年全國3理)若,則(A)(B)(C)1(D)3、(16年全國2文)函數(shù)的最大值為(A)4(B)5 (C)6 (D)
2025-04-08 12:18
【摘要】化簡或證明變形時主要考慮方法:“異名化同名,異角化同角.”“公式的正用、逆用、變形用.”第25講三角函數(shù)式的化簡與三角恒等式的證明一、知識要點二、例題分析三、作業(yè)及練習(xí)《全案》94P訓(xùn)練1、2、3、5例1例2例3第25講三角函數(shù)式的化簡與三角恒等式
2025-08-05 20:17
【摘要】三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實數(shù)m的取值范圍是_________.5.若tanα=3,則cos2α+3sin2α=
2025-06-22 22:13