【摘要】歸納是通過對特例的觀察和綜合去發(fā)現(xiàn)一般規(guī)律,一般通過觀察圖形或分析式子尋找規(guī)律,歸納過程的典型步驟是:先在諸多特例中發(fā)現(xiàn)某些相似性,再把相似性推廣為一個(gè)明確表述的一般命題,最后對該命題進(jìn)行檢驗(yàn)或論證.[例1]在德國布萊梅舉行的第48屆世乒賽期間,某商場櫥窗里用同樣的乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有一層,就一
2025-11-08 19:03
【摘要】結(jié)構(gòu)圖假設(shè)洗水壺需2min,燒開水需15min,洗茶壺、杯子需要3min,取放茶葉需2min,沏茶需1min,試給出喝茶問題的流程圖流程圖數(shù)學(xué)運(yùn)用洗水壺2min燒開水15min洗茶壺杯3min取放茶葉2min沏茶1min洗茶壺杯3min取放茶葉
2025-11-09 12:14
【摘要】變化率問題一個(gè)變量相對于另一個(gè)變量的變化而變化的快慢程度叫做變化率.問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?問題1氣球膨脹率
2025-11-09 12:13
【摘要】2.反證法理解反證法的概念,掌握反證法證題的步驟.本節(jié)重點(diǎn):反證法概念的理解以及反證法的證題步驟.本節(jié)難點(diǎn):應(yīng)用反證法解決問題.1.反證法假設(shè)原命題(即在原命題的條件下,結(jié)論不成立),經(jīng)過正確的推理,最后得出矛盾,因此說明,從而證明了,這種證明方法叫做反證法
2025-11-08 23:14
【摘要】數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法是一種證明與正整數(shù)有關(guān)的數(shù)學(xué)命題的重要方法.主要有兩個(gè)步驟一個(gè)結(jié)論:【歸納奠基】(1)證明當(dāng)n取第一個(gè)值n0(如n0=1或2等)時(shí)結(jié)論正確(2)假設(shè)n=k(k≥n0,n∈N*)時(shí)結(jié)論正確,證明n=k+1時(shí)結(jié)論也正確(3)由(1)、(2)得出結(jié)論【歸納遞推】
2025-11-08 05:48
【摘要】2020/12/24復(fù)數(shù)的乘法2020/12/24一、復(fù)數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個(gè)復(fù)數(shù)的積仍是一個(gè)復(fù)數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1
2025-11-08 15:11
【摘要】2020/12/24復(fù)數(shù)的除法2020/12/24復(fù)數(shù)除法的法則復(fù)數(shù)的除法是乘法的逆運(yùn)算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復(fù)數(shù)x+yi,叫做復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商,記作.a+bic+di2020/12/24a+bic+
2025-11-08 12:09
【摘要】§基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則教學(xué)目標(biāo):1.熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;2.掌握導(dǎo)數(shù)的四則運(yùn)算法則;3.能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù)。教學(xué)重點(diǎn):基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)難點(diǎn):基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算
2025-11-11 03:14
【摘要】1.3.2函數(shù)的極值與導(dǎo)數(shù)(1)一、教學(xué)目標(biāo):理解函數(shù)的極大值、極小值、極值點(diǎn)的意義.掌握函數(shù)極值的判別方法.進(jìn)一步體驗(yàn)導(dǎo)數(shù)的作用.二、教學(xué)重點(diǎn):求函數(shù)的極值.教學(xué)難點(diǎn):嚴(yán)格套用求極值的步驟.三、教學(xué)過程:(一)函數(shù)的極值與導(dǎo)數(shù)的關(guān)系1、觀察下圖中的曲線a點(diǎn)的函數(shù)值f(a)比它臨近點(diǎn)的函數(shù)值都大.b點(diǎn)的函數(shù)值f(
2025-11-10 22:43
【摘要】復(fù)數(shù)的概念一、學(xué)法建議:1、本節(jié)內(nèi)容概念較多,在理解的基礎(chǔ)上要牢記實(shí)數(shù)、虛數(shù)、純虛數(shù)與復(fù)數(shù)的關(guān)系,特別要明確:實(shí)數(shù)也是復(fù)數(shù),要把打復(fù)數(shù)與虛數(shù)加以區(qū)別,對于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實(shí)數(shù),而不是純虛數(shù),初學(xué)復(fù)數(shù)時(shí)最易在這里出錯(cuò)。2、復(fù)數(shù)z=a+bi(a、是由它實(shí)部和虛
2025-11-10 20:23
【摘要】2.演繹推理理解演繹推理的概念,掌握演繹推理的形式,并能用它們進(jìn)行一些簡單的推理,了解合情推理與演繹推理的聯(lián)系與區(qū)別.本節(jié)重點(diǎn):演繹推理的結(jié)構(gòu)特點(diǎn).本節(jié)難點(diǎn):三段論推理規(guī)則.1.演繹推理從的原理出發(fā),推出情況下的結(jié)論的推理形式.它的特點(diǎn)是:由的推理.它的特征是:當(dāng)
2025-11-08 23:15
【摘要】2.2直接證明與間接證明2.綜合法與分析法理解綜合法和分析法的概念及它們的區(qū)別,能熟練地運(yùn)用綜合法、分析法證題.本節(jié)重點(diǎn):綜合法與分析法的概念及用分析法與綜合法證題的過程、特點(diǎn).本節(jié)難點(diǎn):用綜合法與分析法證明命題.綜合法和分析法綜合法分析法定義利用和某些
2025-11-09 08:10
【摘要】3.復(fù)數(shù)代數(shù)形式的乘除運(yùn)算掌握復(fù)數(shù)的乘法、除法的運(yùn)算法則并能熟練準(zhǔn)確地運(yùn)用法則解決相關(guān)的問題.本節(jié)重點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算.本節(jié)難點(diǎn):復(fù)數(shù)除法.1.復(fù)數(shù)乘法運(yùn)算法則設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R),則z1z2=(a+bi)(c+di)=.2
2025-11-08 23:19
【摘要】【本講教育信息】一.教學(xué)內(nèi)容:定積分及其應(yīng)用二.重點(diǎn)、難點(diǎn):1.基本積分表(1)cdx???0(2)cxdx????1(3)cxndxxnn?????111(4)cxdxx???ln1(5)cxxdx????cossin(6)???cxxdx
2025-11-06 04:35
【摘要】1.7定積分的簡單應(yīng)用利用定積分的思想方法解決一些簡單曲邊圖形的面積、變速直線運(yùn)動的路程、變力作功等問題.本節(jié)重點(diǎn):應(yīng)用定積分的思想方法,解決一些簡單的諸如求曲邊梯形面積、變速直線運(yùn)動的路程、變力作功等實(shí)際問題.本節(jié)難點(diǎn):把實(shí)際問題抽象為定積分的數(shù)學(xué)模型.1.利用定