【摘要】第五章導(dǎo)數(shù)和微分§1導(dǎo)數(shù)的概念§2求導(dǎo)法則§3參變量函數(shù)的導(dǎo)數(shù)§4高階導(dǎo)數(shù)§5微分1、給出了導(dǎo)數(shù)的物理模型—瞬時(shí)速度和幾何模型—切線斜率。2、給出了函數(shù)在一點(diǎn)的導(dǎo)數(shù)(可導(dǎo))的定義和函數(shù)在一點(diǎn)的左、右導(dǎo)數(shù)的定義,以及函數(shù)在區(qū)間上可導(dǎo)的定義
2025-08-01 13:14
【摘要】1.偏導(dǎo)數(shù)的概念及有關(guān)結(jié)論?定義;記號(hào);幾何意義?函數(shù)在一點(diǎn)偏導(dǎo)數(shù)存在函數(shù)在此點(diǎn)連續(xù)?混合偏導(dǎo)數(shù)連續(xù)與求導(dǎo)順序無(wú)關(guān)2.偏導(dǎo)數(shù)的計(jì)算方法?求一點(diǎn)處偏導(dǎo)數(shù)的方法先代后求(復(fù)雜時(shí))如P694先求后代利用定義?求高階偏導(dǎo)數(shù)的方法逐次求導(dǎo)法、(與求導(dǎo)順序無(wú)關(guān)時(shí),應(yīng)選擇方便的求導(dǎo)順
2024-11-03 17:37
【摘要】(AdvancedMathematics)?CSMyzx0?P導(dǎo)數(shù)與微分2習(xí)題課(Ⅲ)高階導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分3??????????????????????導(dǎo)數(shù)定義幾何意義可導(dǎo)性與連續(xù)性的
2025-05-05 22:04
【摘要】高職數(shù)學(xué)wele第三章導(dǎo)數(shù)與微分§3-2函數(shù)的求導(dǎo)法則§3-3微分§3-1導(dǎo)數(shù)的概念本章小結(jié)與提高在專業(yè)課許多的問(wèn)題中,需要研究各種變量的變化速度。如物體的運(yùn)動(dòng)速度,電流變化,密度變化,熱量變化,化學(xué)反應(yīng)速度及生物繁殖率等,這些
2024-10-05 00:44
【摘要】Chapt5導(dǎo)數(shù)和微分15世紀(jì)文藝復(fù)興以后的歐洲,資本主義逐漸發(fā)展,采礦冶煉、機(jī)器發(fā)明、商業(yè)交往、槍炮制造、遠(yuǎn)洋航海、天象觀測(cè)等大量實(shí)際問(wèn)題,給數(shù)學(xué)提出了前所未有的亟待解決的新課題。其中有兩類問(wèn)題導(dǎo)致了導(dǎo)數(shù)概念的產(chǎn)生:(1)求變速運(yùn)動(dòng)的瞬時(shí)速度;(2)求曲線上一點(diǎn)處的切線。這兩類問(wèn)題都?xì)w結(jié)為變量變化的快慢程度,即變化率問(wèn)題。
2025-08-11 09:14
【摘要】宜春學(xué)院《數(shù)學(xué)分析》教案
2025-08-21 20:39
【摘要】第8節(jié)高階導(dǎo)數(shù)與高階微分高階導(dǎo)數(shù)的運(yùn)算法則).()())()(()()()(xvxuxvxunnn??????????????)()()1(1)()0()())()((knkknnnnnvuCvuCvuxvxu.)!(!!!)1()1()0()0(knknkknnnCvvuukn?????????,,1.2.
2025-07-20 05:25
【摘要】導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::xxxxxx??????00,)()(00xfxxfy?????)()()(lim)()()(limlim)(000000導(dǎo)函數(shù)一般地:??????????????????????xxfxxfxf
2025-05-15 21:38
【摘要】§3.53.5.1高階導(dǎo)數(shù)與高階微分的概念機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束高階導(dǎo)數(shù)與高階微分第3章3.5.2高階導(dǎo)數(shù)與高階微分的運(yùn)算法則高階導(dǎo)數(shù)與高階微分的概念??sst?ddsvt?vs??其瞬時(shí)為速度為:即其加
2025-05-10 12:39
【摘要】定義含有未知函數(shù)的導(dǎo)數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2024-10-19 13:27
【摘要】第三單元微分中值定理與導(dǎo)數(shù)應(yīng)用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調(diào)增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項(xiàng)式是_________。6、曲線的拐點(diǎn)坐標(biāo)是_________。7、若在含的(其中)內(nèi)恒有二階負(fù)的導(dǎo)數(shù),且_______,則是在上的
2025-08-17 11:37
【摘要】第二章習(xí)題2—1一、填空題=2x+b是拋物線y=x2在某點(diǎn)處的法線,則b=__________.,其上升高度與時(shí)間的關(guān)系為s(t)=3t-gt2,問(wèn)物體在時(shí)間間隔[t0,t0+]的平均速度________,t0時(shí)刻的即時(shí)速度________,到達(dá)最高點(diǎn)的時(shí)刻______.二、選擇題1.設(shè)
2025-07-23 11:16
【摘要】《高等數(shù)學(xué)》Ⅱ—Ⅰ課程教案第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用本章內(nèi)容是上一章的延續(xù),主要是利用導(dǎo)數(shù)與微分這一方法來(lái)分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎(chǔ)即為在微分學(xué)中占有重要地位的幾個(gè)微分中值定理。在分析、論證過(guò)程中,中值定理有著廣泛的應(yīng)用。一、教學(xué)目標(biāo)與基本要求(一)知識(shí)、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-06-24 23:00
【摘要】導(dǎo)數(shù)的定義0()yfxx?設(shè)函數(shù)在點(diǎn)的某定義:個(gè)鄰域內(nèi)0,(xxx?有定義當(dāng)自變量在處取得增量點(diǎn)0),xxy??仍在該鄰域內(nèi)時(shí)相應(yīng)地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2025-08-05 04:41
【摘要】第2章導(dǎo)數(shù)與微分本章重點(diǎn)導(dǎo)數(shù)與微分的概念;基本初等函數(shù)的求導(dǎo)公式;求導(dǎo)法則;導(dǎo)數(shù)的應(yīng)用本章難點(diǎn)導(dǎo)數(shù)與微分的概念;復(fù)合函數(shù)的求導(dǎo)法則。導(dǎo)數(shù)的概念初等函數(shù)的導(dǎo)數(shù)與求導(dǎo)法則函數(shù)的微分及其應(yīng)用中值定理與導(dǎo)數(shù)的應(yīng)用'()dyfxdx?第2章導(dǎo)數(shù)與微分兩
2025-08-05 18:49