freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

微積分及其意義(文件)

2024-08-26 06:33 上一頁面

下一頁面
 

【正文】 理,當(dāng)自變量為多個(gè)時(shí),可得出多元微分得定義。ud(u/v)=(du結(jié)婚到底該不該給彩禮?給多少好?cqwangxiping 微積分學(xué)是微分學(xué)和積分學(xué)的總稱。如果將整個(gè)數(shù)學(xué)比作一棵大樹,那么初等數(shù)學(xué)是樹的根,名目繁多的數(shù)學(xué)分支是樹枝,而樹干的主要部分就是微積分。他們建立微積分的出發(fā)點(diǎn)是直觀的無窮小量,理論基礎(chǔ)是不牢固的。比如我國的莊周所著的《莊子》一書的“天下篇”中,記有“一尺之棰,日取其半,萬世不竭”。歸結(jié)起來,大約有四種主要類型的問題:第一類是研究運(yùn)動(dòng)的時(shí)候直接出現(xiàn)的,也就是求即時(shí)速度的問題。 十七世紀(jì)的許多著名的數(shù)學(xué)家、天文學(xué)家、物理學(xué)家都為解決上述幾類問題作了大量的研究工作,如法國的費(fèi)爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;意大利的卡瓦列利等人都提出許多很有建樹的理論。 牛頓和萊布尼茨建立微積分的出發(fā)點(diǎn)是直觀的無窮小量,因此這門學(xué)科早期也稱為無窮小分析,這正是現(xiàn)在數(shù)學(xué)中分析學(xué)這一大分支名稱的來源。牛頓在流數(shù)術(shù)中所提出的中心問題是:已知連續(xù)運(yùn)動(dòng)的路徑,求給定時(shí)刻的速度(微分法);已知運(yùn)動(dòng)的速度求給定時(shí)間內(nèi)經(jīng)過的路程(積分法)。1686年,萊布尼茨發(fā)表了第一篇積分學(xué)的文獻(xiàn)。 前面已經(jīng)提到,一門科學(xué)的創(chuàng)立決不是某一個(gè)人的業(yè)績,他必定是經(jīng)過多少人的努力后,在積累了大量成果的基礎(chǔ)上,最后由某個(gè)人或幾個(gè)人總結(jié)完成的。牛頓的無窮小量,有時(shí)候是零,有時(shí)候不是零而是有限的小量;萊布尼茨的也不能自圓其說。 任何新興的、具有無量前途的科學(xué)成就都吸引著廣大的科學(xué)工作者。微積分是高等數(shù)學(xué)的主要分支,不只是局限在解決力學(xué)中的變速問題,它馳騁在近代和現(xiàn)代科學(xué)技術(shù)園地里,建立了數(shù)不清的豐功偉績。微積分的基本概念和內(nèi)容包括微分學(xué)和積分學(xué)。此后,微積分學(xué)極大的推動(dòng)了數(shù)學(xué)的發(fā)展,同時(shí)也極大的推動(dòng)了天文學(xué)、力學(xué)、物理學(xué)、化學(xué)、生物學(xué)、工程學(xué)、經(jīng)濟(jì)學(xué)等自然科學(xué)、社會科學(xué)及應(yīng)用科學(xué)各個(gè)分支中的發(fā)展。通常把自變量x的增量 Δx稱為自變量的微分,記作dx,即dx = Δx。因此,導(dǎo)數(shù)也叫做微商。 積分是微分的逆運(yùn)算,即知道了函數(shù)的導(dǎo)函數(shù),反求原函數(shù)。 = f(x)一個(gè)實(shí)變函數(shù)在區(qū)間[a,b]上的定積分,是一個(gè)實(shí)數(shù)。.......n階微分的微分稱為(n+1)階微分即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n階導(dǎo)數(shù),d(n)y指n階微分,dx^n指dx的n次方)。一階微分與高階微分函數(shù)一階導(dǎo)數(shù)對應(yīng)的微分稱為一階微分。一個(gè)函數(shù)的不定積分(亦稱原函數(shù))指另一族函數(shù),這一族函數(shù)的導(dǎo)函數(shù)恰為前一函數(shù)。當(dāng)|Δx|很小時(shí),|Δy-dy|比|Δy|要小得多(高階無窮小),因此在點(diǎn)M附近,我們可以用切線段來近似代替曲線段。(x)dx。一元微分定義: 設(shè)函數(shù)y = f(x)在某區(qū)間內(nèi)有定義,x0及x0 + Δx在此區(qū)間內(nèi)。積分學(xué)的主要內(nèi)容包括:定積分、不定積分等。這種方法叫做數(shù)學(xué)分析。貝努利和他的兄弟約翰 直到19世紀(jì)初,法國科學(xué)學(xué)院的科學(xué)家以柯西為首,對微積分的理論進(jìn)行了認(rèn)真研究,建立了極限理論,后來又經(jīng)過德國數(shù)學(xué)家維爾斯特拉斯進(jìn)一步的嚴(yán)格化,使極限理論成為了微積分的堅(jiān)定基礎(chǔ)。應(yīng)該指出,這是和歷史上任何一項(xiàng)重大理論的完成都要經(jīng)歷一段時(shí)間一樣,牛頓和萊布尼茨的工作也都是很不完善的?,F(xiàn)在我們使用的微積分通用符號就是當(dāng)時(shí)萊布尼茨精心選用的。就是這樣一片說理也頗含糊的文章,卻有劃時(shí)代的意義。 牛頓在1671年寫了《流數(shù)法和無窮級數(shù)》,這本書直到1736年才出版,它在這本書里指出,變量是由點(diǎn)、線、面的連續(xù)運(yùn)動(dòng)產(chǎn)生的,否定了以前自己認(rèn)為的變量是無窮小元素的靜止集合。 十七世紀(jì)下半葉,在
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1