【摘要】(2)共線向量的一個充要條件:aa????0時,與同向;?a?a=0時,?00??a(1)實數(shù)與向量的積:a?定理:向量與非零向量共線的充要條
2025-07-25 17:39
【摘要】證明三點共線問題的方法1、利用梅涅勞斯定理的逆定理例1、如圖1,圓內(nèi)接ΔABC為不等邊三角形,過點A、B、C分別作圓的切線依次交直線BC、CA、AB于、、,求證:、、三點共線。解:記,易知..由梅涅勞斯定理的逆定理,知、、三點共線。2、利用四點共圓(在圓內(nèi),主要由角相等或互補得到共線)例2、如圖,以銳角ΔABC的一邊BC為直徑作⊙O,過點A作⊙O的兩條切
2025-07-26 19:12
【摘要】平面向量與空間向量知識點對比內(nèi)容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長度,用||或|a|表示零向量長度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長度相等,方向相同的向量叫做相等向量相反向量長度相
2025-06-19 22:59
【摘要】學(xué)大教育個性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【摘要】沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案課題:平面向量基本定理科目:數(shù)學(xué)設(shè)計人:秦穎備課組長:陳艷萍年級主任:張寶東沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):(1)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達。(2)培養(yǎng)獨立思考及勇于探求的精神;
2025-08-17 14:03
【摘要】應(yīng)用平面向量基本定理解題舉例秭歸一中數(shù)學(xué)組周宗圣向量融數(shù)、形于一體,具有幾何與代數(shù)形式的雙重身份,因此向量的引入與應(yīng)用極大地拓寬了解題的思想與方法。其解題方法歸納如下::將題目已知條件轉(zhuǎn)化成形式,其中、不共線,則.例1:設(shè)、、為非零向量,其中任意兩個向量不共線,已知+與共線,且+與共線,試問與+是否共線?并證明你的結(jié)論.證明:∵與共線,∴存在唯一實數(shù),使得=
2025-03-26 04:29
【摘要】共線向量與共面向量ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點E是面A’C’的中心,求下列各式中的x,y.EABCDDCBA)()1(''
2025-07-24 06:25
【摘要】淮北礦業(yè)集團公司中學(xué)紀(jì)迎春一.復(fù)習(xí)提問:...二.新課:定理:對于空間任意兩個向量a、b(b=0),a//b的充要條件是存在實數(shù)λ使a=λb.推論:如果l為經(jīng)過已知點A且平行于已知非零向量a的直線,那么對任一點O,點P在直線l上的充要條件是存在實數(shù)t,滿足等式
2025-07-25 00:32
【摘要】段宇昕數(shù)學(xué)資料平面向量知識點歸納§ 平面向量的概念及線性運算1.向量的有關(guān)概念名稱定義備注向量既有大小又有方向的量;向量的大小叫做向量的長度(或稱模)平面向量是自由向量零向量長度為0的向量;其方向是任意的記作0單位向量
2025-06-22 17:27
【摘要】第二章平面向量:數(shù)學(xué)中,我們把既有大小,又有方向的量叫做向量。數(shù)量:我們把只有大小沒有方向的量稱為數(shù)量。:帶有方向的線段叫做有向線段。有向線段三要素:起點、方向、長度。(模):向量的大小,也就是向量的長度(或稱模),記作。:長度為0的向量叫做零向量,記作,零向量的方向是任意的。單位向量:長度等于1個單位的向量,叫做單位向量。:方向相同或相反的非零向量叫
2025-06-25 07:30
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實際問題的重要思想方法;?(3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達.?教學(xué)重點:平面向量基本定理.
2025-11-03 18:20
【摘要】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【摘要】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2025-10-31 06:28
【摘要】基礎(chǔ)自主回扣命題熱點突破知能綜合檢測目錄下一頁上一頁末頁首頁章首課前練習(xí):已知正△ABC的邊長為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會
2025-07-23 07:12
【摘要】平面向量基本定理北京市第五中學(xué)王琦一、教學(xué)內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書?數(shù)學(xué)4》(人教A版)第二章第三節(jié)的第一課時()《平面向量基本定理》.平面向量基本定理屬于概念性知識.平面向量基本定理是在向量知識體系中占有核心地位的定理.一方面,平面向量基本定理是平面向量正交分解及坐標(biāo)表示的基礎(chǔ),坐標(biāo)表示使平面中的向量與它的坐標(biāo)建立起了一一對應(yīng)的關(guān)系,這為通過“數(shù)”的運算處
2025-04-17 01:00