【摘要】湖南長郡衛(wèi)星遠程學校平面向量的坐標運算平面向量的坐標運算主講:王毅湖南長郡衛(wèi)星遠程學校提問:湖南長郡衛(wèi)星遠程學校(1)平面向量的基本定理的內(nèi)容是什么?什么叫做平面向量的基底?提問:湖南長郡衛(wèi)星遠程學校(1)平面向量的基本定理的內(nèi)容是什
2024-11-09 02:25
【摘要】1、平面向量的坐標表示與平面向量分解定理的關系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-12 19:04
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當且僅當有唯一一個實數(shù),使得ab
2024-11-17 19:47
【摘要】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12
【摘要】當時,0??與同向,ba且是的倍;||b||a?當時,0??與反向,ba且是的倍;||b||a||?當時,0??0b?,且。||0
2024-11-09 03:31
【摘要】(2)共線向量的一個充要條件:aa????0時,與同向;?a?a=0時,?00??a(1)實數(shù)與向量的積:a?定理:向量與非零向量共線的充要條
2025-07-25 17:39
【摘要】平面向量的坐標運算平面向量共線的坐標表示問題提出?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).,使得向量具有代數(shù)特征,并
2025-07-19 00:10
【摘要】平面向量的坐標表示及運算(2)),(yxMOxy課前復習:2加、減法法則.a+b=(x2,y2)+(x1,y1)=(x2+x1,y2+y1)3實數(shù)與向量積的運算法則:λa=λ(xi+yj)=λxi+λyj=(λx,λy)4向量坐標:若A(x1,y1),B(x2,
2024-10-19 17:16
2024-11-11 21:09
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【摘要】第二節(jié)平面向量的基本定理及坐標表示基礎梳理1.平面向量基本定理及坐標表示(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個_______向量,那么對于這一平面內(nèi)的任意向量a,_______一對實數(shù)使a=__________.其中,____________________叫做表示這一平面內(nèi)所有向量的一組基底.
2024-11-12 01:26
【摘要】高考總復習高中數(shù)學高考總復習平面向量基本定理及坐標表示習題及詳解一、選擇題1.(2010·安徽)設向量a=(1,0),b=(,),則下列結論中正確的是( )A.|a|=|b| B.a(chǎn)·b=C.a(chǎn)-b與b垂直 D.a(chǎn)∥b[答案] C[解析] |a|=1,|b|=,故A錯;a·b=,故B錯;(a-b)·b=
2025-04-17 12:41
【摘要】平面向量數(shù)量積的坐標表示、模、夾角.),1,1(),32,1(1?的夾角與求已知例baba????例2已知A(1,2),B(2,3),C(-2,5),試判斷?ABC的形狀,并給出證明.練習(1)已知=(4,3),向量是垂直于的單位向量,求.abab
2025-04-24 09:59
【摘要】第一篇:平面向量基本定理(教學設計) 平面向量基本定理 教學設計 平面向量基本定理教學設計 一、教材分析 本節(jié)課是在學習了共線向量基本定理的前提下,進一步研究平面內(nèi)任一向量的表示,為今后平面...
2024-11-15 04:09
【摘要】平面向量基本定理課時練1.給出下面三種說法:①一個平面內(nèi)只有一對不共線的非零向量可作為表示該平面所有向量的基底;②一個平面內(nèi)有無數(shù)多對不共線的非零向量可作為表示該平面所有向量的基底;③零向量不可為基底中的向量.其中正確的說法是( )A.①② B.②③C.①③ D.②解析:因為不共線的兩個向量都可以作為一組基底,所以一個平面內(nèi)有無數(shù)多個基底,又零向
2025-03-25 01:22