【摘要】第二節(jié)平面向量基本定理及坐標(biāo)表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進(jìn)行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
2024-11-12 01:35
【摘要】平面向量的正交分解及坐標(biāo)表示復(fù)習(xí)平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使a=λ1e1+λ2e2(1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不唯一,關(guān)鍵
2025-07-24 04:29
【摘要】平面向量的坐標(biāo)運算(一)(教案)中衛(wèi)市第一中學(xué)俞清華教學(xué)目標(biāo):知識與技能:(1)理解平面向量的坐標(biāo)概念;(2)掌握平面向量的坐標(biāo)運算.過程與方法:(1)通過對坐標(biāo)平面內(nèi)點和向量的類比,培養(yǎng)學(xué)生類比推理的能力;(2)通過平面向量坐標(biāo)表示和坐標(biāo)運算法則的推導(dǎo)培養(yǎng)學(xué)生歸納、猜想、演繹的能力;(3)通過用代數(shù)方法處理幾何問題,提高學(xué)生用數(shù)形結(jié)合的思想方法解決問題的能力.
2025-04-16 23:06
【摘要】坐標(biāo)表示、模、夾角復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:.)(cos||||或內(nèi)積的數(shù)量積與叫做,我們把數(shù)量夾角為它們的,和已知兩個非零向量bababa??復(fù)習(xí)引入1.平面向量的數(shù)量積
2024-10-18 14:26
【摘要】 平面向量的正交分解及坐標(biāo)表示 平面向量的坐標(biāo)運算 學(xué)習(xí)目標(biāo) 核心素養(yǎng) ,掌握向量的坐標(biāo)表示.(難點) ,掌握兩個向量和、差及數(shù)乘向量的坐標(biāo)運算法則.(重點) .(易混點) ,...
2025-04-05 06:14
【摘要】學(xué)大教育個性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【摘要】平面向量的坐標(biāo)表示與運算平面向量的坐標(biāo)表示平面向量的坐標(biāo)表示1.在平面內(nèi)有點A和點B,向量怎樣表示?AB2.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對實數(shù)x、y,使得3.分別與x軸、y軸方向相同的兩單位向量i、j能否作為基底?Ox
2024-10-19 17:16
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件12《平面向量-平面向量的應(yīng)用》1.知識精講:掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題.cos?abab?一、知識回顧12122222112
2024-11-09 08:48
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一.復(fù)習(xí)回顧:問題:回憶一下,向量的數(shù)量積?又如何用數(shù)量積、長度來反映夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答案:babababa????????cos,cos運算律有:)()().(2bababa????????abba??
2025-01-20 04:59
【摘要】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理1.平面向量基本定理及坐標(biāo)表示(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個_______向量,那么對于這一平面內(nèi)的任意向量a,_______一對實數(shù)使a=__________.其中,____________________叫做表示這一平面內(nèi)所有向量的一組基底.
2024-11-12 01:26
【摘要】課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復(fù)習(xí)·課標(biāo)版·A數(shù)學(xué)(理)課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復(fù)習(xí)·課標(biāo)版·A數(shù)學(xué)(理)考綱要求考情分析本定理及其意義.2.掌握平面向量的正交分解及其坐標(biāo)表示.3.會用坐
2025-07-24 07:57
【摘要】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點、終點的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個向量a=(x1,y
2024-11-28 00:13
【摘要】平面向量的坐標(biāo)表示1、平行向量基本定理:babbababa???????0////)(2、向量數(shù)乘坐標(biāo)表示3、一個向量的坐標(biāo)等于向量終點的坐標(biāo)減去始點的坐標(biāo)),(2121aaaaa??????),()()(11222211yx yxAB yx ByxA,,),()
2024-11-18 15:31
【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,
2024-11-11 21:10
【摘要】第2講平面向量的基本定理及坐標(biāo)表示?不同尋常的一本書,不可不讀喲!?1.了解平面向量基本定理及其意義.?2.掌握平面向量的正交分解及坐標(biāo)表示.?3.會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運算.?4.理解用坐標(biāo)表示的平面向量共線的條件.?1個重要區(qū)別?向量的坐標(biāo)與點的坐標(biāo)不同,向量平移后,其起點
2024-11-17 20:14