【摘要】基本不等式作業(yè)(一)1.下列不等式成立的是()A.a(chǎn)bba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2024-11-23 13:45
【摘要】(第一課時(shí))導(dǎo)學(xué)案【課程標(biāo)準(zhǔn)要求】①探索并了解基本不等式的證明過程.②會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮栴}.【學(xué)習(xí)目標(biāo)】①經(jīng)歷由幾何圖形抽象出重要不等式的過程,會(huì)用比較法證明重要不等式;②經(jīng)歷由重要不等式代換獲得基本不等式的過程,知道與的相等與不等關(guān)系及等號(hào)成立的條件;矚慫潤(rùn)厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。③經(jīng)歷從不同角度探索基本不等式的證明過程,加深認(rèn)識(shí)基本不等
2025-04-16 12:23
【摘要】基本不等式(第一課時(shí))教學(xué)設(shè)計(jì)及反思?人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(必修5)》中的“基本不等式”。下面把這節(jié)課的教學(xué)設(shè)計(jì)、教后反思記錄下來,愿與同行研討?!盎静坏仁健笔潜匦?的重點(diǎn)內(nèi)容,在課本封面上就體現(xiàn)出來了。它是在學(xué)完“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對(duì)不等式的進(jìn)一步研究.在不等式的證明和求最值過程中有著廣泛的應(yīng)用。求最值又是
2025-08-05 04:52
【摘要】基本不等式【學(xué)習(xí)目標(biāo)】ab?2ba?的證明方法,要求學(xué)生掌握算術(shù)平均數(shù)與幾何平均數(shù)的意義,并掌握“均值不等式”及其推導(dǎo)過程。.【學(xué)習(xí)重難點(diǎn)】理解利用基本不等式ab?2ba?求函數(shù)的最值問題【類法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2024-11-23 12:48
【摘要】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們?cè)谑褂没静坏仁降倪^程中往往會(huì)遇到各種各樣的題型而覺得無從入手。現(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)記為“和定積最大”(2)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)
2025-07-23 12:30
【摘要】:學(xué)案(第一課時(shí))一、學(xué)習(xí)目標(biāo)基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實(shí)數(shù)、、滿足,則的最大值為▲.3、已知正實(shí)數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實(shí)數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實(shí)數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定
2025-08-05 04:41
【摘要】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)
2025-03-24 03:55
【摘要】第一篇:基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對(duì)大家有幫助! 基本不等式說課稿1 尊敬的各位考官大家好,我是今天的X號(hào)考生...
2024-10-28 11:36
【摘要】基本不等式習(xí)題課一知識(shí)復(fù)習(xí)1.基本不等式:對(duì)任意a、b∈____,有a+b2≥ab成立,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).(1)x、y∈(0,+∞),且xy=P(定值),那么當(dāng)x=y(tǒng)時(shí),x+y有最___值2P.(2)x、y∈(0,+∞),且x+
2025-08-05 04:43
【摘要】......不等式一、知識(shí)點(diǎn):1.實(shí)數(shù)的性質(zhì):;;.2.不等式的性質(zhì):性質(zhì)內(nèi)容對(duì)稱性,.傳遞性且.加法性質(zhì);且.乘法性質(zhì)
2025-06-24 19:24
【摘要】第一篇:基本不等式的教學(xué)設(shè)計(jì) 《基本不等式》教學(xué)設(shè)計(jì) 基本不等式 教材分析 本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠...
2024-10-24 17:31
【摘要】第一篇:基本不等式練習(xí)題 重難點(diǎn):了解基本不等式的證明過程;會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮栴}.考綱要求:①了解基本不等式的證明過程. ②會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮栴}.經(jīng)典例...
2024-10-29 01:07
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38