【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實數(shù)、、滿足,則的最大值為▲.3、已知正實數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標(biāo)?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點:?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2025-08-05 04:41
【摘要】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時
2025-03-24 03:55
【摘要】第一篇:基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1 尊敬的各位考官大家好,我是今天的X號考生...
2025-10-19 11:36
【摘要】基本不等式習(xí)題課一知識復(fù)習(xí)1.基本不等式:對任意a、b∈____,有a+b2≥ab成立,當(dāng)且僅當(dāng)a=b時取等號.(1)x、y∈(0,+∞),且xy=P(定值),那么當(dāng)x=y(tǒng)時,x+y有最___值2P.(2)x、y∈(0,+∞),且x+
2025-08-05 04:43
【摘要】......不等式一、知識點:1.實數(shù)的性質(zhì):;;.2.不等式的性質(zhì):性質(zhì)內(nèi)容對稱性,.傳遞性且.加法性質(zhì);且.乘法性質(zhì)
2025-06-24 19:24
【摘要】第一篇:基本不等式的教學(xué)設(shè)計 《基本不等式》教學(xué)設(shè)計 基本不等式 教材分析 本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠...
2025-10-15 17:31
【摘要】第一篇:基本不等式練習(xí)題 重難點:了解基本不等式的證明過程;會用基本不等式解決簡單的最大(?。┲祮栴}.考綱要求:①了解基本不等式的證明過程. ②會用基本不等式解決簡單的最大(?。┲祮栴}.經(jīng)典例...
2025-10-20 01:07
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點)如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時取“=”號)如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2025-11-03 17:13
【摘要】第八節(jié)基本不等式考綱點擊.(小)值問題.熱點提示,兼顧考查代數(shù)式變形、化簡能力,注意“一正、二定、三相等”的條件.,可出選擇題、填空題,也可出以函數(shù)為載體的解答題.,與其他知識結(jié)合在一起來考查基本不等式,證明不會太難.但題型多樣,涉及面廣.基本不等式不等式成立的條件等號成立的條件
2025-10-31 04:10
【摘要】......新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個和為定值,可考慮把括號內(nèi)外x的系數(shù)變
2025-03-25 00:14
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2025-10-19 23:35
【摘要】高考基本不等式專題典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個和為定值,可考慮把括號內(nèi)外x的系數(shù)變成互為相反數(shù);(2)中,未指出x>0,因而不能直接使用基本不等式,需分x>0與x<0討論.(1)解法一:∵0<x<,∴1-3x>0.∴y=x(1-3x)=·3x(1-3
2025-03-25 02:05
【摘要】基本不等式:授課人:祁玉瑞授課類型:新授課一、知識與技能:使學(xué)生了解基本不等式的代數(shù)、幾何背景,學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等;學(xué)會應(yīng)用基本不等式解決簡單的數(shù)學(xué)問題。過程與方法:通過探索基本不等式的過程,讓學(xué)生體會研究數(shù)學(xué)問題的基本思想方法,學(xué)會學(xué)習(xí),學(xué)會探究。情感態(tài)度與價值
2025-04-17 02:35