【摘要】人教版高中數(shù)學必修5第三章不等式單元測試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)5、不等式的解集是()A{x|-1<x<3}B{x|x>3或x<-1}C{x|-3<x<1}
2025-06-23 00:06
【摘要】溫故知新1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 17:33
【摘要】均值不等式的綜合應用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應用:11,lglg,(lglg),2lg(
2024-11-18 08:48
【摘要】不等關(guān)系與不等式1.甲、乙兩人同時從A到B.甲一半路程步行,一半路程跑步;乙一半時間步行,一半時間跑步.如果兩人步行速度、跑步速度均相同,則()A.甲先到BB.乙先到BC.兩人同時到BD.誰先到無法確定2.設(shè),不等式能成立的個數(shù)為()A.0B.1C.
2024-12-03 03:12
【摘要】&一、均值不等式(基本不等式)abba??2均值定理:如果a、b∈N*,那么當且僅當a=b時,式中等號成立。算術(shù)平均數(shù)幾何平均數(shù)兩個正實數(shù)的算術(shù)平均值大于或等于它的幾何平均值。二、均值不等式的應用不等式的證明2:,0???baabab求證例、已知????.9
2025-08-04 16:55
【摘要】一對一個性化輔導教案課題不等式復習教學重點不等式求最值、線性規(guī)劃教學難點不等式求最值的方法教學目標1、掌握基本不等式的應用條件;2、熟悉基本不等式的常見變形。教學步驟及教學內(nèi)容一、課前熱身:回顧上次課內(nèi)容二、內(nèi)容講解:1、基本不等式的形式;2、基本不等式的應用條
2025-04-17 12:39
【摘要】雙基限時練(二十)一、選擇題1.不等式-6x2-x+2≤0的解集為()A.{x|-23≤x≤12}B.{x|x≤-23,或x≥12}C.{x|x≥12}D.{x|x≤-23}解析由-6x2-x+2≤0,得6x2+x-2≥0,x≥12或x≤-23.答案B2.
2024-12-04 23:46
【摘要】雙基限時練(二十六)一、選擇題1.設(shè)變量x,y滿足約束條件?????x≥0,y≥0,x+y≤1,則目標函數(shù)z=x+2y的最大值為()A.0B.1C.2D.3解析不等式組表示的平面區(qū)域如圖所示,當z=x+2y過(0,1)時z取得最大值2.答案C
2024-12-04 20:39
【摘要】陜西省吳堡縣吳堡中學高中數(shù)學第三章不等關(guān)系與不等式1典型例題素材北師大版必修5【例1】已知a|b|;(4)a2b2;(5);(6).【例2】設(shè)f(x)=ax2+bx且1≤f(-1)≤2,2≤f(1)≤
【摘要】:2baab??復習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【摘要】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2024-11-19 18:20
【摘要】高中數(shù)學必修5__第三章《不等式》復習知識點總結(jié)與練習(一)第一節(jié)不等關(guān)系與不等式[知識能否憶起]1.實數(shù)大小順序與運算性質(zhì)之間的關(guān)系a-b>0?a>b;a-b=0?a=b;a-b<0?a<b.2.不等式的基本性質(zhì)性質(zhì)性質(zhì)內(nèi)容注意對稱性ab?bb,bc?ac?可加性a>
【摘要】不等式的實際應用1.解有關(guān)不等式的應用題,首先要選用合適的字母表示題中的未知數(shù),再由題中給出的不等量關(guān)系,列出關(guān)于未知數(shù)的不等式(組),然后解列出的不等式(組),最后結(jié)合問題的實際意義寫出答案.2.在實際應用問題中,若應用均值不等式求最值同樣必須確?!耙徽?、二定、三相等”的原則.“一正”即必須滿
2024-11-19 23:20
【摘要】§一元二次不等式的解法(1)教學目標(一)教學知識點1.一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系.2.一元二次不等式的解法.(二)能力訓練要求1.通過由圖象找解集的方法提高學生邏輯思維能力,滲透數(shù)形結(jié)合思想.2.提高運算(變形)能力.(三)德育滲透目標滲透由具體到抽象思想.教學重點
2024-11-18 23:35
【摘要】1.(2020·江西卷)不等式|x-2x|x-2x的解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)解析:依題意知,x-2x0,∴0x2,故選A.答案:A2.(202
2024-11-15 03:18