【正文】
39。Y39。Y39。 ),( ZYX ??????三、旋轉(zhuǎn)矩陣的構(gòu)建 測(cè)繪與城市空間信息系 ???????????321321321cccbbbaaaR??????????ZYX??????????? fyxR?X?R?X? ?R?X? X? ?R? xX?X?R? ?R ?Rx??????????ZYX??????????? fyx?R? ?R ?R三、旋轉(zhuǎn)矩陣的構(gòu)建 測(cè)繪與城市空間信息系 ??? RRRR ??????????? ??????c o s0s i n010s i n0c o s???????????????c o ss i n0s i nc o s0001?????????? ?1000c o ss i n0s i nc o s??????????????321321321cccbbbaaa?R三、旋轉(zhuǎn)矩陣的構(gòu)建 測(cè)繪與城市空間信息系 ????? si nsi nsi nco sco s1 ??a????? ssa cosi nsi ninco s2 ?? -?? sa cosi n3 ???? s i nco1 sb ??? co sco2 sb ??si n3 ??b????? s i ns i nco sco ss i n1 ??c????? ssc cos i nco sins i n2 ?? -?? sc coc o s3 ???????????321321321cccbbbaaa?R( Orientation Matrix) 三、旋轉(zhuǎn)矩陣的構(gòu)建 測(cè)繪與城市空間信息系 四、共線條件方程定義 S f A o a 在理想情況下 , 攝影瞬間 像點(diǎn) 、 投影中心 、 物點(diǎn) 位于同一條直線上 , 描述這三點(diǎn)共線的數(shù)學(xué)表達(dá)式稱(chēng)之為共線條件方程 。Z39。Z zS?R? xX?用矩陣形式表達(dá) 第三次旋轉(zhuǎn) S— xyz )( x ,y ,fa的坐標(biāo) S— X39。Xxy?? ?????????? ??1000c o ss i n0s i nc o s????????????????????ZYX??????????? fyx39。Z39。 ), ZYX ???(a的坐標(biāo) S— X39。39。39。= 用矩陣形式表達(dá) X?R?X?S— X39。 旋角 。 N O M E h ????? ??? 、ω?測(cè)繪與城市空間信息系 3) 系統(tǒng) aA ??、主垂面方向角 。 ????? ??? 、???? 旋角 。 o ??? 、測(cè)繪與城市空間信息系 SXYZ Sxyz ??? 、YXZ 1) 系統(tǒng) ??? 、地輔系 像空系 x O o y y x z S Y X Z ? M N h ?以 Y為主軸的外方位角元素 測(cè)繪與城市空間信息系 2) 系統(tǒng) 傾角 。 o ??? 、測(cè)繪與城市空間信息系 1) 系統(tǒng) 繞 Z??軸 Sxyz 第三次旋轉(zhuǎn) ?? Z?? X39。 X39。 X39。39。 X39。 X39。Z39。 旋角 。 定義: ?線元素 ?角元素 測(cè)繪與城市空間信息系 S o A a x y x