【總結(jié)】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件/會用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會求閉區(qū)間上函數(shù)的最大值、最小值/會利用導(dǎo)數(shù)解決某些實(shí)際問題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)y′
2024-09-29 15:55
【總結(jié)】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂二、微分的幾何意義一、微分的概念§三、微分的運(yùn)算法則四、微分在近似計(jì)算中的應(yīng)用執(zhí)吾鐔蟛鯉旒蜉蟆蜮笱縹舁唼猁嬡頦毒窗惹胂候拒謦雇榿舄狼瓢猷俘冉劉璃符塢論哀暮伴在
2024-11-03 17:55
【總結(jié)】函數(shù)的微分前面我們從變化率問題引出了導(dǎo)數(shù)概念,它是微分學(xué)的一個(gè)重要概念。在工程技術(shù)中,還會遇到與導(dǎo)數(shù)密切相關(guān)的另一類問題,這就是當(dāng)自變量有一個(gè)微小的增量時(shí),要求計(jì)算函數(shù)的相應(yīng)的增量。一般來說,計(jì)算函數(shù)增量的準(zhǔn)確值是比較繁難的,所以需要考慮用簡便的計(jì)算方法來計(jì)算它的近似值。由此引出了微分學(xué)的另一個(gè)基本概念——微分。一、問題的提出
2025-05-06 08:07
【總結(jié)】導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::xxxxxx??????00,)()(00xfxxfy?????)()()(lim)()()(limlim)(000000導(dǎo)函數(shù)一般地:??????????????????????xxfxxfxf
2024-11-03 20:18
【總結(jié)】一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實(shí)際背景(瞬時(shí)速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點(diǎn)解析
2025-08-05 05:46
【總結(jié)】,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(對多項(xiàng)式函數(shù)求導(dǎo)一般不超過三次).;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(對多項(xiàng)式函數(shù)求導(dǎo)一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(對多項(xiàng)式函數(shù)求導(dǎo)一般不超過三次)..在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有
2025-08-23 15:21
【總結(jié)】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2024-11-21 01:21
2024-11-11 02:10
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動機(jī)動目錄上頁下頁返回
2025-05-12 21:33
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-06 19:05
【總結(jié)】可分離變量的微分方程第二節(jié)一階微分方程的一般形式:(,)yfxy??(,)(,)0PxydxQxydy??(變量與對稱)xy若將看作未知函數(shù),則有x若將看作未知函數(shù),則有y(,)((,)0)(,)dyPxyQxydxQ
2025-07-18 15:26
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)1.知識與技能結(jié)合函數(shù)的圖象,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件.2.過程與方法會用導(dǎo)數(shù)求不超過三次的多項(xiàng)
2024-10-19 11:51
【總結(jié)】1第六章單變量微分學(xué)郇中丹2021-2021學(xué)年第一學(xué)期2基本內(nèi)容?§0微積分的創(chuàng)立?§1導(dǎo)數(shù)和微分的定義?§2求導(dǎo)規(guī)則?§3區(qū)間上的可導(dǎo)函數(shù)(中值定理)?§4不定式?§5Taylor公式?§
2024-10-18 12:19
【總結(jié)】導(dǎo)數(shù)公式表一、知識新授:1、常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)公式1:)(0為常數(shù)CC??幾何意義:常數(shù)函數(shù)在任何一點(diǎn)處的切線平行于x軸。練習(xí)2:1x??????????00limlim11xxyfxxfxxfxxxxxxxx???????
2025-08-05 06:14
【總結(jié)】1總復(fù)習(xí)二導(dǎo)數(shù)與微分一、導(dǎo)數(shù)與微分的定義????????討論已知,000,0,00,1sin???????????ggxxxxgxf??.0處的連續(xù)性和可微性在?xxf例1????xxgxfxx1sinlimlim00????解??
2025-07-25 07:37