freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理教學(xué)反思-wenkub

2024-11-18 23 本頁面
 

【正文】 做錯了。同時出示勾股定理的圖形,讓學(xué)生猜想直角三角形三邊之間的關(guān)系。:欣賞勾股樹。采取“個人思考——小組活動——全班交流”的形式。,了解直角三角形三邊關(guān)系的作用。,讓學(xué)生進行分析、歸納,鼓勵學(xué)生用用語言表達自己的發(fā)現(xiàn)。4. 趙爽弦圖與《周髀算經(jīng)》中的“商高問題”。二、優(yōu)化數(shù)學(xué)教學(xué)內(nèi)容的呈現(xiàn)方式(一)創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生思考,激發(fā)學(xué)習(xí)興趣。它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+ b2= c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位,從而激發(fā)學(xué)生的求知欲。這一課的學(xué)習(xí)就主要通過讓學(xué)生自主地探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。每個學(xué)生都有自己的生活背景、家庭環(huán)境,這種特定的文化氛圍,導(dǎo)致不同的學(xué)生有不同的思維方式和解決問題的策略。數(shù)學(xué)學(xué)習(xí)是數(shù)學(xué)發(fā)展史的縮影,是一個累進過程。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進了自主學(xué)習(xí)。同學(xué)們一看,興趣來了。反復(fù)演示幾遍,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論。一舉兩得。在教學(xué)應(yīng)用勾股定理時,老是運用公式計算,學(xué)生感覺會比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運用多媒體出示了一道實際問題:即學(xué)校草地問題。教學(xué)中我以教師為主導(dǎo),以學(xué)生為主體,以知識為載體,以培養(yǎng)能力為重點。在探究直角三角形三邊關(guān)系時,通過網(wǎng)格中的直角邊長為1的等腰直角三角形來分析,分析以邊為邊長的正方形面積之間的關(guān)系,因為圖形特殊,學(xué)生容易從中得出關(guān)系。教學(xué)重點勾股定理的探索過程.教學(xué)難點將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,為便于計算圖形面積.采用拼接,割補,平移的方法突破難點。借助生活情境,使學(xué)生體會到我們的生活中蘊涵著豐富的數(shù)學(xué)問題,感受數(shù)學(xué)學(xué)習(xí)在生活中的作用。同時勾股定理的探索和證明蘊含著豐富的數(shù)學(xué)思想和研究方法,是培養(yǎng)學(xué)生思維品質(zhì)的載體。它對數(shù)學(xué)發(fā)展具有重要作用。讓學(xué)生享受數(shù)學(xué)的有用。學(xué)生易于接受,體現(xiàn)轉(zhuǎn)化劃歸解決問題的思想。然后在將圖形換為直角邊長為4的情形,引導(dǎo)分析關(guān)系,再推廣到一般的情形,最終得到結(jié)論。為學(xué)生創(chuàng)設(shè)“做數(shù)學(xué)、玩數(shù)學(xué)”的教學(xué)情境,讓學(xué)生從“學(xué)會”到“會學(xué)”,從“會學(xué)”到“樂學(xué)”。同學(xué)們一看,興趣來了。第二篇:八年級勾股定理教學(xué)反思八年級勾股定理教學(xué)反思 八年級勾股定理教學(xué)反思 1在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進行探索,然后同學(xué)進行討論,最后上臺演示。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生的想像力。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。勾股定理是人類幾千年的文化遺產(chǎn),是經(jīng)典的定理,擁有科學(xué)簡潔的數(shù)學(xué)語言。學(xué)生已有豐富的數(shù)學(xué)活動經(jīng)驗,特別是運用數(shù)學(xué)解決問題的策略。這堂課將信息技術(shù)融入利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動腦動手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實驗室”,學(xué)生通過自己的活動得出結(jié)論、使創(chuàng)新精神與實踐能力得到了發(fā)展。一、精心編制數(shù)學(xué)教學(xué)目標知識與技能:,理解并掌握勾股定理的內(nèi)容;;。(二)通過學(xué)生動手操作,觀察分析,實踐猜想,合作交流,人人參與活動,體驗并感悟“圖形”和“數(shù)量”之間的相互聯(lián)系。采取“個人思考——小組活動——全班交流”的形式。(三)繼續(xù)動手操作實踐,思考探究,拼圖驗證猜想。(四)拓展延伸,發(fā)揮作為千古第一定理的文化價值。然后利用正方形網(wǎng)格驗證猜想的正確性,還利用教具在黑板上拼圖,啟發(fā)學(xué)生用面積法得出a2+ b2= c2在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進行探索,然后同學(xué)進行討論,最后上臺演示。是什么原因致使錯誤頻出呢?我輾轉(zhuǎn)反側(cè)。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。例如:已知直角三角形兩邊長分別是4,求第三邊的長。四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學(xué)寫出一句“由勾股定理得”的不恰當(dāng)?shù)臄⑹?。試問:?dāng)教師在講臺上滔滔不絕地講解時,能否保證每一個學(xué)生都專心去聽?能否保證每一個專心去聽的學(xué)生都聽得明白?能否保證每一個聽得明白的學(xué)生都能解同一類題目?可見:“課堂上教師講,學(xué)生聽,聽就會懂,懂就會做。這樣,可防患于未然,并提高學(xué)生分析、判斷、解決問題的能力。教學(xué)中,在加強技能訓(xùn)練的同時,要強化數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué),做到講方法聯(lián)系思想,以思想指導(dǎo)方法,使二者相互交融,相得益彰。教學(xué)時應(yīng)抓好“三轉(zhuǎn)”能力的培養(yǎng):(1)語言轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。條例清晰,層次分明,邏輯嚴謹?shù)慕獯疬^程的板演,不但便于學(xué)生理解、掌握知識,還會給學(xué)生起到示范作用。一 、轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。讓學(xué)生們拿出準備好的直角三角形和正方形,利用拼圖和面積計算來證明 + = (學(xué)生分組討論。 “教師教,學(xué)生聽,教師問,學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴重阻阻礙了現(xiàn)代教育的發(fā)展。課堂中要特別關(guān)注:關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達活動過程和所獲得的結(jié)論等;關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理。對幾何圖形的認識始于觀察、測量、比較等直觀實驗手段,現(xiàn)代兒童認識幾何圖形亦如此,可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。 培養(yǎng)邏輯推理能力,作了認真的考慮和精心的設(shè)計,把推理證明作為學(xué)生觀察、實驗、探究得出結(jié)論的自然延續(xù)。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。教學(xué)難點將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.本節(jié)課根據(jù)學(xué)生的認知結(jié)構(gòu)采用“觀察猜想歸納驗證應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想.另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學(xué)生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實驗很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達到了再次點燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。我選的是《勾股定理》一課。忽來一陣狂風(fēng)急,吹倒荷花水中偃。走進生活:以裝修房子為主線,設(shè)計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應(yīng)用的典型例題?!毒耪滤阈g(shù)》約成書于公元一世紀。問水深、葭長各幾何?” “荷花問題”的解法與“引葭赴岸”問題一樣。在教學(xué)應(yīng)用勾股定理時,老是運用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進行查閱、了解。這就達到了新課標新理念的預(yù)定目標。不足之處:學(xué)生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規(guī)范。分析:由勾股定理結(jié)論:直角三角形中兩直角邊的平方和等于斜邊的平方。其三,用面積法求直角三角形的高,我認為是一個非常簡單的數(shù)學(xué)問題,但在實際教學(xué)中,發(fā)現(xiàn)很多學(xué)生仍然很難理解,說明我在備課時備學(xué)生不充分,沒有站在學(xué)生的角度去考慮問題。課堂上老師放一放,學(xué)生得到的更多,老師放多少,學(xué)生就有多大的自主發(fā)展的空間。啟發(fā)學(xué)生也是一門藝術(shù),我的課堂上有點啟而不發(fā)。第三課時講授了如何用勾股定理解決生活中的實際問題。第一課時的課堂教學(xué)中,所以無論是引入、拼圖,還是歷史回顧,我都注意去調(diào)動學(xué)生,“千古第一定理”,其魅力在于其歷史價值和應(yīng)用價值,再在課堂上進行展示,這極大地調(diào)動了學(xué)生,既加深了對勾股定理文化的理解,又培養(yǎng)了他們收集、也是本節(jié)課的難點,為了突破這一難點,我設(shè)計了拼圖活動,并自制精巧的課件讓學(xué)生從形上感知,再層層設(shè)問,從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點.第二課時我依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的
點擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1