【總結】三角函數(shù)解三角形專題 一.解答題(共33小題)1.設函數(shù)f(x)=cos2x+sin2(x+).(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;(Ⅱ)當x∈[﹣,)時,求f(x)的取值范圍.2.已知函數(shù)f(x)=4sinx?sin(x+)﹣1,(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[﹣,]上的最大值和最小值.3.已知函數(shù)f(x)=2sin(ax﹣
2025-08-04 23:16
【總結】解直角三角形應用經(jīng)典AB12千米PCDG60°圖1,一架飛機在空中P處探測到某高山山頂D處的俯角為60°,此后飛機以300米/秒的速度沿平行于地面AB的方向勻速飛行,飛行10秒到山頂D的正上方C處,此時測得飛機距地平面的垂直高度為12千米,求這座山的高(),水壩的橫斷面是梯形,背水坡AB的
2025-07-22 08:17
【總結】專題考案解三角形(時間:90分鐘滿分:100分)一、選擇題(9×3′=27′)1.在△ABC中,“A30°”是“sinA”的()2.已知△ABC中,a=x,b=2,∠B=45°,若這個三角形有兩解,則的取值范圍是
2025-06-07 23:53
【總結】第一篇:解三角形公式[大全] 1、正弦定理:在DABC中,a、b、c分別為角A、B、C的對邊,R為DABC的外接圓的半徑,則有 2、正弦定理的變形公式:① ②sinA=sinB=sinC= ③...
2024-10-26 23:10
【總結】第7講解三角形第7講│云覽高考[云覽高考]考點統(tǒng)計題型(頻率)考例(難度)考點1正弦定理與余弦定理選擇(1)解答(1)2022湖北卷8(B),2011湖北卷16(B)考點2三角形的面積問題0考點3解三角形的實際應
2025-08-05 17:39
【總結】課題:解斜三角形講解:陳功課型:復習課1、復習初中所學的有關三角形的知識:①A+B+C=π②b+ca,a+cb,a+bc③|b–c|a,|a–c|b,|a–
2025-08-05 16:23
【總結】..三角函數(shù)及解三角形練習題 一.解答題(共16小題)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大?。?.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函數(shù)f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函數(shù)f(x)=2cos2x+asin2x+1的一個零點.(Ⅰ)求實數(shù)a的值;
2025-08-05 03:08
【總結】三角函數(shù)及解三角形練習題 一.解答題(共16小題)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大?。?.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函數(shù)f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函數(shù)f(x)=2cos2x+asin2x+1的一個零點.(Ⅰ)求實數(shù)a的值;(Ⅱ
2025-03-24 05:42
【總結】第七節(jié)解三角形考綱點擊掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.熱點提示、余弦定理進行邊角轉化,進而進行恒等變換解決問題.、余弦定理和面積公式的同時,考查三角恒等變換,這是高考的熱點.,是高考命
2024-11-10 07:28
【總結】15/15
2025-03-24 07:41
【總結】......1.(2013大綱)設的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設△的內(nèi)角所對的邊分別為,且
2025-06-18 18:56
【總結】........相似三角形題一、選擇填空題1、如圖1,已知AD與VC相交于點O,AB//CD,如果∠B=40°,∠D=30°,則∠AOC的大小為()APCB°°
2025-03-25 06:30
【總結】全等三角形綜合復習切記:“有三個角對應相等”和“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點,點在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-23 18:30
【總結】1.任意角的三角函數(shù)的定義:設是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關,而與終邊上點P的位置無關。:(一全二正弦,三切四余弦)+?。 。 。 。 。 。 。 。 。 。?.同
2025-06-22 22:24
【總結】全國卷歷年高考三角函數(shù)及解三角形真題歸類分析三角函數(shù)一、三角恒等變換(3題)1.(2015年1卷2)=()(A)(B)(C)(D)【解析】原式===,故選D.考點:本題主要考查誘導公式與兩角和與差的正余弦公式.2.(2016年3卷)(5)若,則()(A)(B)
2025-06-26 05:02