freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

函數(shù)的單調(diào)性教學設計[全文5篇]-wenkub

2024-11-09 17 本頁面
 

【正文】 是整個定義域(如一次函數(shù)),可以是定義域內(nèi)某個區(qū)間(如二次函數(shù)),也可以根本不單調(diào)(如常函數(shù)).③函數(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認為函數(shù)在上是增(或減)函數(shù).思考:如何說明一個函數(shù)在某個區(qū)間上不是單調(diào)函數(shù)? 【設計意圖】讓學生由特殊到一般,從具體到抽象歸納出單調(diào)性的定義,通過對判斷題的辨析,加深學生對定義的理解,、掌握證法,適當延展例 證明函數(shù)在上是增函數(shù).1.分析解決問題針對學生可能出現(xiàn)的問題,組織學生討論、交流.證明:任取 ,設元求差變形,斷號∴∴即∴函數(shù)2.歸納解題步驟在上是增函數(shù).定論引導學生歸納證明函數(shù)單調(diào)性的步驟:設元、作差、變形、斷號、定論.練習:證明函數(shù)問題:要證明函數(shù)在區(qū)間上是增函數(shù),除了用定義來證,如果可以證得對在上是增函數(shù).任意的,且有可以嗎? 引導學生分析這種敘述與定義的等價性.讓學生嘗試用這種等價形式證明函數(shù)在〖設計意圖〗初步掌握根據(jù)定義證明函數(shù)單調(diào)性的方法和步驟.等價形式進一步發(fā)展可以得到導數(shù)法,為用導數(shù)方法研究函數(shù)單調(diào)性埋下伏筆.四、歸納小結(jié),提高認識學生交流在本節(jié)課學習中的體會、收獲,交流學習過程中的體驗和感受,師生合作共同完成小結(jié).1.小結(jié)(1)概念探究過程:直觀到抽象、特殊到一般、感性到理性.(2)證明方法和步驟:設元、作差、變形、斷號、定論.(3)數(shù)學思想方法和思維方法:數(shù)形結(jié)合,等價轉(zhuǎn)化,類比等. 2.作業(yè)書面作業(yè): 第4,5,6題. 課后探究:(1)證明:函數(shù)在區(qū)間上是增函數(shù)的充要條件是對任意的上是增函數(shù).,且有.(2)研究函數(shù)的單調(diào)性,并結(jié)合描點法畫出函數(shù)的草圖.《函數(shù)的單調(diào)性》教學設計說明一、教學內(nèi)容的分析函數(shù)的單調(diào)性是學生在了解函數(shù)概念后學習的函數(shù)的第一個性質(zhì),是函數(shù)學習中第一個用數(shù)學符號語言刻畫的概念,為進一步學習函數(shù)其它性質(zhì)提供了方法依據(jù). 對于函數(shù)單調(diào)性,學生的認知困難主要在兩個方面:(1)要求用準確的數(shù)學符號語言去刻畫圖象的上升與下降,這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學生是比較困難的;(2)單調(diào)性的證明是學生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,而學生在代數(shù)方面的推理論證能力是比較薄弱的.根據(jù)以上的分析和教學大綱的要求,確定了本節(jié)課的重點和難點.二、教學目標的確定根據(jù)本課教材的特點、教學大綱對本節(jié)課的教學要求以及學生的認知水平,從三個不同的方面確定了教學目標,重視單調(diào)性概念的形成過程和對概念本質(zhì)的認識;強調(diào)判斷、證明函數(shù)單調(diào)性的方法的落實以及數(shù)形結(jié)合思想的滲透;突出語言表達能力、推理論證能力的培養(yǎng)和良好思維習慣的養(yǎng)成.三、教學過程的設計為達到本節(jié)課的教學目標,突出重點,突破難點,教學上采取了以下的措施:(1)在探索概念階段, 讓學生經(jīng)歷從直觀到抽象、從特殊到一般、從感性到理性的認知過程,完成對單調(diào)性定義的三次認識,使得學生對概念的認識不斷深入.(2)在應用概念階段,通過對證明過程的分析,幫助學生掌握用定義證明函數(shù)單調(diào)性的方法和步驟.(3)考慮到我校學生數(shù)學基礎較好、思維較為活躍的特點,對判斷方法進行適當?shù)难诱?,加深對定義的理解,同時也為用導數(shù)研究單調(diào)性埋下伏筆.第四篇:函數(shù)的單調(diào)性教學設計《函數(shù)的單調(diào)性》教學設計設計理念新課程背景下的數(shù)學教學既要注重邏輯推理,又要關注直覺思維的啟迪,不僅要讓學生學會,更要讓學生會學,要讓學生學習的過程成為其心靈愉悅的主動認知的過程.基于以上設計理念,對于本節(jié)課,我從背景分析、教學目標設計、課堂結(jié)構(gòu)設計、教學媒體設計、教學過程設計及教學評價等六個方面進行簡單說明。例如,指出回答②試圖用自然數(shù)列來驗證結(jié)論,而且引入了不等式表示不等關系,但是,只是對有限幾個自然數(shù)驗證不行,只有當所有的比較結(jié)果都是一樣的:自變量大時,函數(shù)值也大,才可以證明它是增函數(shù),那么怎么辦?如果有的學生提出:引入非負實數(shù)a,只要證明就可以了,這就把驗證的范圍由有限擴大到了無限。在初中數(shù)學中,除了學習函數(shù)的初級概念,用y=f(x)表示函數(shù)y隨著自變量x的變化而變化時,接觸到一點動態(tài)數(shù)學對象的數(shù)學符號表示以外,絕大多數(shù)都是用數(shù)學符號表示靜態(tài)的數(shù)學對象。后一過程的進行則有相當?shù)碾y度,其難就難在用數(shù)學的符合語言來描述函數(shù)單調(diào)性的定義時,如何才能最大限度地通過學生自己的思維活動來完成。恰當運用圖形語言、自然語言和符號化的形式語言,并進行三者之間必要的轉(zhuǎn)化,可以說,這是學習數(shù)學的基本思考方式。學生在初中已經(jīng)接觸過一次函數(shù)、反比例函數(shù)、二次函數(shù),對函數(shù)的增減性已有初步的認識:隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。第四階段,認識提升階段(高中選修系列2),要求學生能初步認識導數(shù)與單調(diào)性的聯(lián)系。至于在多種函數(shù)性質(zhì)中,選擇這個時機來討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因為函數(shù)的單調(diào)性是學生從已經(jīng)學習的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì)。接踵而來的任務是對函數(shù)應該繼續(xù)研究什么。最近,在我區(qū)“青年教師評優(yōu)課”上,聽了多名教師對這節(jié)課不同風格的課堂教學,通過對他們教學案例的研究和思考,筆者認為,在函數(shù)單調(diào)性概念的教學中,關鍵是把握住如下三個關鍵點。一共有三大題,第一題是求單調(diào)區(qū)間,其中要用圖形,數(shù)形結(jié)合;第二題要利用例4的小結(jié)“兩個函數(shù)單調(diào)性相同則復合后是增,相反則復合后是減。關于鞏固練習題目方面的選擇:這部分選兩題,類型在例題中已出現(xiàn),其中第一個要先證明函數(shù)的單調(diào)性,再求值域。)上遞減,又f(x)也遞減,所以[2,+165。x+59,提醒學生注意函數(shù)定義域!238。豐富學生的知識體系。x21選擇這個題目是為了讓學生更好地掌握定義法證明函數(shù)單調(diào)性的方法和基本步驟,變式的選擇是為培養(yǎng)學生分情況討論的意識和能力,講解過程中要注意證明的規(guī)范性,進一步培養(yǎng)學生嚴謹、規(guī)范的科學態(tài)度和品質(zhì)。復習分為概念回顧和基礎練習兩部分,預計費時7到8分鐘左右,其中概念為(1)函數(shù)單調(diào)性和單調(diào)區(qū)間的定義以及用定義證明函數(shù)單調(diào)性的步驟,(2)怎么判斷函數(shù)單調(diào)性及單調(diào)區(qū)間——可以用定義法,也可以從圖象上觀察。而學生在學習過程中不僅要訓練知識技能,還要達到思維的訓練,因此這節(jié)課要以學生為主體,給學生充足的活動空間。教學重點和難點:本節(jié)課的教學重點是函數(shù)單調(diào)性的判定、證明及應用。下面我就這部分內(nèi)容的習題教學提出一些不成熟的做法。本節(jié)課是高中數(shù)學新課程標準必修1的第2章函數(shù)里的函數(shù)基本性質(zhì)中介紹的第一個性質(zhì)。這篇教學設計完整,思路清晰.案例首先通過實例闡述了函數(shù)單調(diào)性產(chǎn)生的背景,歸納、抽象概括出了增函數(shù)、減函數(shù)的定義,充分體現(xiàn)了數(shù)學教學的本質(zhì)是數(shù)學思維過程的教學,符合新課程標準的精神.例題與練習由淺入深,完整,全面.練習的設計有新意,有深度,為學生數(shù)學思維能力、創(chuàng)造能力的培養(yǎng)提供了平臺.二、教學重難點:本節(jié)課重點要理解函數(shù)單調(diào)性及相關概念,掌握函數(shù)單調(diào)性的判斷(圖象法)與證明(定義法)的方法與步驟。是R上的增函數(shù)。接下來,我們再來看一個例題: 例3:判斷,變形,一般化成幾個因子積的形式(或的符號;在(∞,0)的單調(diào)性,并加以證明。要了解函數(shù)某一區(qū)間是否具有單調(diào)性,從圖象上進行觀察是一種常用而又較為粗略的方法,嚴格地說,它需要根據(jù)函數(shù)單調(diào)性的定義進行證明。如果函數(shù)在整個定義域內(nèi)是增加的或是減少的,我們分別稱這個函數(shù)為增函數(shù)或減函數(shù),統(tǒng)稱為單調(diào)函數(shù)問題3:(如圖)定義在區(qū)間上的函數(shù)的圖象,根據(jù)圖象說出的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,是單調(diào)增函數(shù)還是單調(diào)減函數(shù)。函數(shù)是單調(diào)增函數(shù)或是單調(diào)減函數(shù),是對定義域內(nèi)某個區(qū)間而言的。第一篇:函數(shù)的單調(diào)性教學設計函數(shù)的單調(diào)性教學設計一、教學流程導入新課:教師引言:日常生活中,我們有過這樣的體驗:從階梯教室前向后走,逐步上升,從階梯教室后向前走,逐步下降,上下樓梯也是一樣。如果函數(shù)在某個區(qū)間上是單調(diào)增函數(shù)(單調(diào)減函數(shù)),那么就說函數(shù)的單調(diào)增(減)區(qū)間。(移動鼠標到圖像上觀察會出現(xiàn)單調(diào)區(qū)間)函數(shù)單調(diào)性的判斷與證明例1:說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。我們來看一個例題: 例2:畫出的圖像,判斷它的單調(diào)性,并加以證明。分析:先畫圖,利用圖像來判斷,再利用定義來證明單調(diào)性。() ,求a的范圍。三、教學方法: 講授法與互動式教學法。它既是在學生學過函數(shù)概念等知識后的延續(xù)和拓展,又是后面研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)各類函數(shù)的單調(diào)性的基礎,而且函數(shù)單調(diào)性在解決函數(shù)變化趨勢、值域、最值、不等式等許多問題中有著廣泛的應用。教學目標:(1)在知識方面,通過習題訓練,使學生能加深對函數(shù)單調(diào)性
點擊復制文檔內(nèi)容
規(guī)章制度相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1