【總結(jié)】第3課時(shí)一元二次不等式及其解法,掌握一元二次不等式的解法...為促進(jìn)某品牌彩電的銷售,廠家設(shè)計(jì)了兩套降價(jià)方案.方案①:先降價(jià)x%,再降價(jià)x%(x0);方案②:一次性降價(jià)2x%,問哪套方案降價(jià)幅度大?問題1:一元二次不等式一般地,含有未知數(shù),且未知數(shù)的最高
2025-11-29 02:37
【總結(jié)】一元二次不等式(2)班級(jí)學(xué)號(hào)姓名學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)(1).從不等式的解集出發(fā)求不等式中參數(shù)的值或范圍的問題;(2)從二次函數(shù)或是一元二次方程的角度,來解決一元二次不等式的綜合題.重點(diǎn)難點(diǎn)重點(diǎn):理解一元二次不等式的解法;難點(diǎn)
2025-11-10 23:13
【總結(jié)】基本不等式:(第2課時(shí))學(xué)習(xí)目標(biāo)(a0,b0).(小)值問題..合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:用籬笆圍成一個(gè)面積為100m2的矩形菜園,問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短.最短的籬笆是多少?問題2:用長(zhǎng)為4a的籬笆圍成一個(gè)矩形菜園ABCD
2025-11-29 20:20
【總結(jié)】引例:用一根長(zhǎng)為100m的繩子能圍成一個(gè)面積大于600m2的矩形嗎?問題情境:分析:設(shè)矩形一邊的長(zhǎng)為xm(0600即x2-50x+6000是二次的不等式叫做一元二次不等式.問題:如何解一元二次不等式呢?定義:含有一個(gè)未知數(shù),并且未
2025-11-08 23:32
【總結(jié)】3.2一元二次不等式學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入某項(xiàng)體育活動(dòng)中,甲小組有n人(n>5),游戲規(guī)則是每人在規(guī)定時(shí)間內(nèi)從A地跑到B地可得(n-4)分,經(jīng)測(cè)試甲小組至多有5人不能在比賽時(shí)完成這個(gè)任務(wù),甲小組在比賽中得分要多于56分,問
2025-11-08 23:16
【總結(jié)】第一篇:高中數(shù)學(xué)《一元二次不等式》教案蘇教版必修5 第4課時(shí):§一元二次不等式(3) 【三維目標(biāo)】: 一、知識(shí)與技能 ,從中體會(huì)由實(shí)際問題建立數(shù)學(xué)模型的方法;、數(shù)學(xué)思想方法在問題解決中的重要作...
2025-10-19 20:54
【總結(jié)】不等式第三章§2一元二次不等式第三章第1課時(shí)一元二次不等式的解法課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)城市人口的急劇增加使車輛日益增多,需要通過修建立交橋和高架道路形成多層立體的布局,以提高車速和通過能力.城市環(huán)線和高
2025-11-08 03:39
【總結(jié)】引例:用一根長(zhǎng)為100m的繩子能圍成一個(gè)面積大于600m2的矩形嗎?問題情境:分析:設(shè)矩形一邊的長(zhǎng)為xm(0600即x2-50x+6000是二次的不等式叫做一元二次不等式.問題:如何解一元二次不等式呢?定義:含有一個(gè)未知數(shù),并且未知數(shù)
2025-11-09 08:48
【總結(jié)】x-1x2-40的解集為()A.(-2,0)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)解析:∵不等式x-1x2-40∴x-1?x-2??x+2?0,∴(x+2)(x-1)(x-2)0由標(biāo)根
2025-11-06 22:59
【總結(jié)】第一篇: (3課時(shí)) (一)教學(xué)目標(biāo) :從實(shí)際問題中建立一元二次不等式,解一元二次不等式;應(yīng)用一元二次不等式解決日常生活中的實(shí)際問題;能用一個(gè)程序框圖把求解一般一元二次不等式的過程表示出來; ...
2025-10-11 18:25
【總結(jié)】二元一次不等式(組)與平面區(qū)域(第2課時(shí))學(xué)習(xí)目標(biāo)..合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題:北京2021年奧運(yùn)會(huì)主體育場(chǎng)“鳥巢”的外形結(jié)構(gòu)是由許多巨大的鋼架構(gòu)成的,在當(dāng)時(shí)為了按期完工,每天至少需要50根高質(zhì)量鋼柱,已知只有兩個(gè)廠有能力生產(chǎn)這種鋼柱,一號(hào)鋼廠和二號(hào)鋼廠每間車間的日生產(chǎn)量分別是10根
2025-11-29 02:41
【總結(jié)】§一元二次不等式及其解法(二)自主學(xué)習(xí)知識(shí)梳理1.解分式不等式的同解變形法則(1)f?x?g?x?0?________________;(2)f?x?g?x?≤0?________________;(3)f?x?g?x?≥a?f?x?-ag?x?g?x?≥0.2.處理不等式恒成立問題的
2025-11-10 23:20
【總結(jié)】3.2一元二次不等式1.一般地,含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為二次的整式不等式,叫做一元二次不等式.2.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次方程f(x)=0的解集,就是使二次函數(shù)值等于0時(shí)自變量x的取值的集合.3.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次不等式f(x
2025-11-26 10:13
【總結(jié)】二元一次不等式表示平面區(qū)域1.教材的重點(diǎn)、難點(diǎn)和關(guān)鍵重點(diǎn):二元一次不等式表示平面區(qū)域。難點(diǎn):準(zhǔn)確理解和判斷二元一次不等式所表示的平面區(qū)域在直線的哪一側(cè)。關(guān)鍵:用數(shù)形結(jié)合的思想方法,幫助學(xué)生用集合的觀點(diǎn)和語言來分析和描述幾何圖形,用“代點(diǎn)法”并結(jié)合多媒體課件動(dòng)態(tài)演示突破難點(diǎn)。1、知識(shí)目標(biāo):二元一次不等式(組)
2025-11-09 13:30
【總結(jié)】課題:一元二次不等式(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握一元二次不等式的解法;進(jìn)一步理解三個(gè)一元二次不等式,一元二次方程和二次函數(shù)之間的關(guān)系;會(huì)解一些簡(jiǎn)單的含參數(shù)的不等式.【課前預(yù)習(xí)】1.如何解一元二次不等式02???cbxax與02???
2025-11-11 01:05