【總結(jié)】第一篇:導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設(shè)m為整數(shù),且...
2024-10-28 18:52
【總結(jié)】放縮法的常見技巧(1)舍掉(或加進)一些項(2)在分式中放大或縮小分子或分母。(3)應(yīng)用基本不等式放縮(例如均值不等式)。(4)應(yīng)用函數(shù)的單調(diào)性進行放縮(5)根據(jù)題目條件進行放縮。(6)構(gòu)造等比數(shù)列進行放縮。(7)構(gòu)造裂項條件進行放縮。(8)利用函數(shù)切線、割線逼近進行放縮。使用放縮法的注意事項(1)放縮的方向要一致。(2)放與縮要適度。(3)很多時候只對數(shù)列
2025-06-26 16:31
【總結(jié)】第一篇:數(shù)列----利用函數(shù)證明數(shù)列不等式 數(shù)列已知數(shù)列{an}的前n項和為Sn,且a2an=S2+Sn對一切正整數(shù)n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)設(shè)a10,數(shù)列{lg大值。 2已知數(shù)列...
2024-10-28 03:31
【總結(jié)】第六章不等式第二節(jié)不等式放縮技巧十法證明不等式,其基本方法參閱(下冊):不等式的放縮技巧。證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給
2025-06-24 19:24
【總結(jié)】淺談放縮法在不等式證明中的應(yīng)用 篇一:《放縮法在不等式的應(yīng)用》論文 放縮法在不等式的應(yīng)用 所謂放縮法確實是利用不等式的傳遞性,對照證標題的進展合情合理的放大和縮小的過程,在使用放縮法證題時要...
2025-03-26 01:26
【總結(jié)】第一篇:《數(shù)列和式不等式的放縮策略》讀書筆記 數(shù)學(xué)通訊(2008年第18期) 數(shù)列和式不等式的放縮策略 季強 (江蘇省常州高級中學(xué)數(shù)學(xué)組,213003) 數(shù)列一直以來也是高考的重點,試卷的壓...
2024-10-28 23:22
【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式 構(gòu)造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2024-10-31 14:50
【總結(jié)】第一篇:放縮法是不等式證明中一種常用的方法 放縮法是不等式證明中一種常用的方法,也是一種非常重要的方法。在證明過程中,適當?shù)剡M行放縮,可以化繁為簡、化難為易,達到事半功倍的效果。但放縮的范圍較難把握...
2024-10-29 04:54
【總結(jié)】1.均值不等式法例1設(shè)求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結(jié)論例5求證例6已知函數(shù)求證:對任意且恒成立。例7已知用數(shù)學(xué)歸納法證明;對對都成立,證明(無理數(shù))例8已知不等式。表示不超過的最大整數(shù)。設(shè)正數(shù)數(shù)列滿足:求證再如:設(shè)函數(shù)。(Ⅰ)
2025-08-11 11:16
【總結(jié)】第一篇:放縮法、反證法證明不等式10 放縮法、反證法證明不等式 教學(xué)目標: 掌握放縮法和反證法證明不等式教學(xué)難點: 放縮法和反證法教學(xué)過程: 一、簡要回顧已經(jīng)學(xué)習(xí)過的幾種不等式證明的方法 ...
2024-10-27 23:14
【總結(jié)】第一篇:關(guān)于和式的數(shù)列不等式證明方法 關(guān)于“和式”的數(shù)列不等式證明方法 方法:先求和,再放縮 例 1、設(shè)數(shù)列{an}滿足a1=0且an 1n,2an+1=1+an+1gan,n ?N*,記...
2024-10-28 23:38
【總結(jié)】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有...
2024-10-28 23:16
【總結(jié)】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【總結(jié)】數(shù)列與不等式的綜合問題 測試時間:120分鐘 滿分:150分解答題(本題共9小題,共150分,解答應(yīng)寫出文字說明、證明過程或演算步驟)1.[2016·銀川一模](本小題滿分15分)在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q(q≠1),且b2+S2=12,q=.(1)求an與bn;(2)證明:≤++…+&
2025-03-25 02:51
【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式答案 構(gòu)造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構(gòu)造函數(shù)有l(wèi)...
2024-10-28 06:10