【總結(jié)】第一篇:均值不等式教案2 課題:§課時(shí):第2課時(shí)授課時(shí)間:授課類型:新授課 【教學(xué)目標(biāo)】 1.知識(shí)與技能:利用均值定理求極值與證明。 2.過(guò)程與方法:培養(yǎng)學(xué)生的探究能力以及分析問(wèn)題、解決問(wèn)題的...
2024-10-27 22:57
【總結(jié)】均值不等式主講人:宋國(guó)鳴北京師范大學(xué)良鄉(xiāng)附屬中學(xué)中學(xué)數(shù)學(xué)高一新授課創(chuàng)設(shè)情境?校園內(nèi)有一個(gè)邊長(zhǎng)分別為a和b的矩形花壇,以及三個(gè)正方形花壇,?①第一個(gè)正方形花壇與矩形花壇的周長(zhǎng)相等,設(shè)它的邊長(zhǎng)為;?②第二個(gè)正方形花壇與矩形花壇的面積相等,設(shè)它的邊長(zhǎng)為;?③第三個(gè)正方形
2024-11-23 13:02
【總結(jié)】第三章不等式數(shù)學(xué)(人教B版·必修5)典題導(dǎo)析課前自主預(yù)習(xí)重點(diǎn)難點(diǎn)展示思路方法技巧建模應(yīng)用引路探索延拓創(chuàng)新課堂鞏固訓(xùn)練名師辨誤做答第三章不等式數(shù)學(xué)
2024-08-14 04:34
【總結(jié)】均值不等式一、基本知識(shí)梳理:如果a﹑b∈R+,那么叫做這兩個(gè)正數(shù)的算術(shù)平均值.:如果a﹑b∈R+,那么叫做這兩個(gè)正數(shù)的幾何平均值:如果a﹑b∈R,那么a2+b2≥(當(dāng)且僅當(dāng)a=b時(shí),取“=”)均值定理:如果a﹑b∈R+,那么≥(當(dāng)且僅
2025-03-25 00:08
【總結(jié)】均值不等式及其應(yīng)用一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”
【總結(jié)】精品資源均值不等式應(yīng)用(二)教學(xué)目的:要求學(xué)生更熟悉基本不等式和極值定理,從而更熟練地處理一些最值問(wèn)題。教學(xué)重點(diǎn): 均值不等式應(yīng)用教學(xué)過(guò)程:一、復(fù)習(xí):基本不等式、極值定理二、例題:1.求函數(shù)的最大值,下列解法是否正確?為什么?解一:∴解二:當(dāng)即時(shí)答:以上兩種解法均有錯(cuò)誤。解一錯(cuò)在取不到“=”,即不存在使得;解二錯(cuò)在不是定值
2025-06-24 04:36
【總結(jié)】......一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明設(shè)a1,a2,a3...an是n個(gè)正實(shí)數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡(jiǎn)單的詳細(xì)過(guò)程,謝謝??!你...
2024-11-05 18:47
【總結(jié)】第一篇:均值不等式的證明 平均值不等式及其證明 平均值不等式是最基本的重要不等式之一,在不等式理論研究和證明中占有重要的位置。平均值不等式的證明有許多方法,這里,我們選了部分具有代表意義的證明方法...
2024-10-27 18:38
【總結(jié)】高中數(shù)學(xué)輔導(dǎo)網(wǎng)不等式證明方法大全不等式的證明是數(shù)學(xué)證題中的難點(diǎn),其原因是證明無(wú)固定的程序可循,方法多樣,技巧性強(qiáng)。1、比較法(作差法)在比較兩個(gè)實(shí)數(shù)和的大小時(shí),可借助的符號(hào)來(lái)判斷。步驟一般為:作差——變形——判斷(正號(hào)、負(fù)號(hào)、零)。變形時(shí)常用的方法有:配方、通分、因式分解、和差化積、應(yīng)用已知定理、公式等。例1、已知:,,求證:。證明:,故得。2、分析法(逆推法)
2024-07-31 19:40
【總結(jié)】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【總結(jié)】第一篇:巧用二元均值不等式證明一組優(yōu)美不等式 巧用二元均值不等式證明不等式 江蘇省常熟市中學(xué) 査正開215500 ***zhazhengkai3@ 二元均值不等式是高中數(shù)學(xué)的重要內(nèi)容,也是后...
2024-11-05 23:06
【總結(jié)】第一篇:均值不等式公式總結(jié)及應(yīng)用 均值不等式應(yīng)用 a2+b21.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£ 2a+b**2.(1)若a,b?R,則3ab(2)若a,b?R,...
2024-10-27 16:18
【總結(jié)】第一篇:《優(yōu)質(zhì)精品》2018年高考數(shù)學(xué)分類:專題7不等式、推理與證明 《2018年高考數(shù)學(xué)分類匯編》 第七篇:不等式、推理與證明 一、選擇題 1.【2018北京卷8】設(shè)集合A={(x,y)|x...
2024-11-10 01:04
【總結(jié)】-1-20xx年高考數(shù)學(xué)基礎(chǔ)強(qiáng)化訓(xùn)練題—《不等式》一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.設(shè),aR?b,已知命題:pab?;命題222:22ababq?????????,則p是q成立的()A.必要不充分條件
2024-08-06 10:15