【總結(jié)】★教學(xué)設(shè)計(jì)★冪函數(shù)(一)教材分析本節(jié)課選自新課程蘇教版必修1第二章第4節(jié),冪函數(shù)是繼指數(shù)函數(shù)和對數(shù)函數(shù)后研究的又一基本函數(shù)。通過本節(jié)課的學(xué)習(xí),學(xué)生將建立冪函數(shù)這一函數(shù)模型,并能用系統(tǒng)的眼光看待231,,yxyxyxyx????,等以前已經(jīng)接觸的函數(shù),進(jìn)一步確立利用函數(shù)的定義
2024-11-23 01:03
【總結(jié)】計(jì)算下列各式a?4)3)(1(??ababa?????????)(2)(3)2(a?12??b?5?)23()32)(3(cbacba???????????cba???25????課前小測))(())()(4(2121bcttbctt?????ctbt2122??復(fù)習(xí)思考:向量的加法
2024-11-18 12:10
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(二)一、填空題1.函數(shù)y=sin(π+x),x∈??????-π2,π的單調(diào)增區(qū)間是____________.2.函數(shù)y=2sin(2x+π3)(-π6≤x≤π6)的值域是________.3.sin1,sin2,sin3按從小到大排列的順序?yàn)開_______________
2024-12-05 10:17
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示教學(xué)目標(biāo)1.正確理解掌握兩個(gè)向量數(shù)量積的坐標(biāo)表示方法,能通過兩個(gè)向量的坐標(biāo)求出這兩個(gè)向量的數(shù)量積.2.掌握兩個(gè)向量垂直的坐標(biāo)條件,能運(yùn)用這一條件去判斷兩個(gè)向量垂直.3.能運(yùn)用兩個(gè)向量的數(shù)量積的坐標(biāo)表示去解決處理有關(guān)長度、角度、垂直等問題.重點(diǎn):兩個(gè)向量數(shù)量積的坐標(biāo)表示,向量的長度公式,兩個(gè)向量垂直的充要條件.難點(diǎn)
2024-11-19 20:36
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(3,1),b=(x,-3),且a⊥b,則實(shí)數(shù)x的值為()(A)-9(B)9(C)1(D)-12.(2021·遼寧高考)已知向量a=(2,1),b
2024-12-03 03:14
【總結(jié)】已知兩個(gè)非零向量a和b,作OA=a,OB=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角。OBAθ問題1:回憶一下物理中“功”的計(jì)算,功的大小與哪些量有關(guān)?結(jié)合向量的學(xué)習(xí)你有什么想法?θ|b|cosθabB1
2025-08-01 17:32
【總結(jié)】abcosab???0?知識回顧1.定義:平面內(nèi)兩個(gè)非零向量的數(shù)量積(內(nèi)積)的定義=向量夾角的概念:平移兩個(gè)非零向量使它們起點(diǎn)重合,所成圖形中0?≤?≤180?的角稱為兩個(gè)向量的夾角
2024-11-18 08:49
【總結(jié)】課題:平面向量復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對知識進(jìn)行一次梳理,突出知識間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》10平面向量數(shù)量積的坐標(biāo)表示導(dǎo)學(xué)案北師大版必修4使用說明96頁到第97頁內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部內(nèi)容.,大膽展示,充分發(fā)揮學(xué)習(xí)小組的高效作用,完成合作探究部分.學(xué)習(xí)目標(biāo)1.掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量數(shù)量積的運(yùn)算.2.理解掌握向量的模、夾角等公式;
2024-11-19 23:19
【總結(jié)】課題:向量的減法班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
2024-11-20 01:05
【總結(jié)】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會用它們進(jìn)行向量計(jì)算【學(xué)習(xí)重難點(diǎn)】重點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律難點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
【總結(jié)】2.向量的減法上節(jié)課我們學(xué)習(xí)了向量加法的概念,并給出了求作和向量的方法.如果河水的流速為2km/n,要想船以6km/n的速度垂直駛向?qū)Π?,如何求船本身的速度和方向呢?.與a______________的向量,叫做a的相反向量,記為________,零向量的相反向量是________.答案:長度相等
2024-12-05 10:16
【總結(jié)】2.2向量的線性運(yùn)算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機(jī)從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
【總結(jié)】高中數(shù)學(xué):《平面向量數(shù)量積的物理背景及其含義》課件(新人教A版必修4)平面向量的數(shù)量積的物理背景及其含義目標(biāo)導(dǎo)學(xué):1、能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,計(jì)算向量的長度;2、會用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。向量的夾角:已知兩個(gè)非零向量和,作,
2025-07-20 04:53