【總結】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復習建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關系以及幾何體的有關問題,常需作輔助線,但有時卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結合,通過向量的代數(shù)計算解決問題,無須添加輔助線。用空間向量解立幾問題
2025-10-31 12:27
【總結】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2025-09-25 17:17
【總結】空間向量在立幾中應用空間向量在立體幾何中的應用空間向量在立幾中應用利用向量判斷位置關系利用向量可證明四點共面、線線平行、線面平行、線線垂直、線面垂直等問題,其方法是通過向量的運算來判斷,這是數(shù)形結合的典型問題空間向量在立幾中應用例1、在正方體AC1中,E、F分別是BB1、CD的中點,求
2025-07-20 06:40
【總結】ABDClβαDCBADCBAE立體幾何中的向量方法——二面角【學習目標】能用向量方法解決二面角的計算問題.【自主學習】1.二面角的大小是用它的平面角來度量的,求二面角關鍵是確定二面角的平面角.探究,二面角α-l-β,AB?α,CD?β,AB⊥
2025-11-10 23:24
【總結】立體幾何中的向量方法(2)【學習目標】1.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題;2.掌握向量運算在幾何中求兩點間距離和求空間圖形中的角度的計算方法.【重點難點】利用向量運算解幾何題【學習過程】一、自主預習(預習教材P105~P107,找出疑惑之處.復習1:已知1ab??,1
2025-11-10 17:32
【總結】立體幾何中的向量方法(1)【學習目標】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問題.【重點難點】直線的方向向量及平面的法向量【學習過程】一、自主預習(預習教材P102~P104,找出疑惑之處)復習1:
2025-11-10 20:38
【總結】第三章空間向量與立體幾何1、坐標運算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-04 05:16
【總結】1.立體幾何初步(1)空間幾何體①認識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結構.②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖.③會用平行投影與中心
2025-06-16 12:13
【總結】第三章空間向量與立體幾何人教A版數(shù)學第三章空間向量與立體幾何人教A版數(shù)學第三章空間向量與立體幾何人教A版數(shù)學1.知識與技能掌握空間向量的數(shù)乘運算.理解共線向量,直線的方向向量和共面向量.2.過程與方法
2025-10-07 20:16
【總結】章末歸納總結1.空間向量的概念及其運算與平面向量類似,向量加、減法的平行四邊形法則,三角形法則以及相關的運算律仍然成立.空間向量的數(shù)量積運算、共線向量定理、共面向量定理都是平面向量在空間中的推廣,空間向量基本定理則是向量由二維到三維的推廣.2.a(chǎn)·b=0?a⊥b是數(shù)形結合的紐帶之一,這是運用空間向量研究線線、線面、面面垂直的關鍵,通??梢耘c
2025-11-08 19:50
【總結】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計算問題.了解向量方法在研究立體幾何問題中的應用.,而平面法向量則多滲透在解答題中考查.、面位置關系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-06-25 00:21
【總結】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2025-08-05 10:54
【總結】l的方向向量,平面α的法向量分別是a=(3,2,1),u=(-1,2,-1),則l與α的位置關系是()A.l⊥αB.l∥αC.l與α相交但不垂直D.l∥α或l?α解析:選D.∵a·u=-3+4-1=0,∴a⊥u,
2025-11-26 06:40
【總結】第一篇:向量法在立體幾何中的運用 龍源期刊網(wǎng)://. 向量法在立體幾何中的運用 作者:何代芬 來源:《中學生導報·教學研究》2013年第27期 摘要:在近幾年的高考中利用向量的模和夾角公式求...
2025-10-12 23:33
【總結】空間向量在立體幾何中的應用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設PA=1,以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標系如圖.則P(0,0,1),C(0,1,0),B
2025-08-18 16:48