【總結(jié)】信號(hào)與系統(tǒng)——多媒體教學(xué)課件(第三章Part1)2023年3月28日星期二信號(hào)與系統(tǒng)第3章第1次課2主要內(nèi)容?傅里葉級(jí)數(shù)和傅里葉級(jí)數(shù)的性質(zhì)?傅里葉變換和傅里葉變換的性質(zhì)?周期信號(hào)和非周期信號(hào)的頻譜分析?卷積定理和連續(xù)時(shí)間LTI系統(tǒng)的頻域分析2023年3月28日星期二信號(hào)與系統(tǒng)第3章第
2025-03-09 13:58
【總結(jié)】信號(hào)與系統(tǒng)——多媒體教學(xué)課件(第三章Part2)2023年3月28日星期二信號(hào)與系統(tǒng)第3章第2次課2第3章連續(xù)時(shí)間信號(hào)與系統(tǒng)的傅里葉分析?引言?連續(xù)周期信號(hào)的傅里葉級(jí)數(shù)表示?練習(xí)一2023年3月28日星期二信號(hào)與系統(tǒng)第3章第2次課3主要內(nèi)容?傅里葉級(jí)數(shù)和傅里葉級(jí)數(shù)的性質(zhì)
2025-03-09 14:13
【總結(jié)】第7章電路的拉普拉斯變換分析法拉普拉斯變換的定義拉普拉斯變換的基本性質(zhì)拉普拉斯反變換復(fù)頻域電路電路的拉普拉斯變換分析法拉普拉斯變換的定義?拉普拉斯變換(簡(jiǎn)稱拉氏變換)是求解常系數(shù)線性微分方程的工具。設(shè)一個(gè)變量t的函數(shù)f(t),在任意區(qū)間能夠滿足狄利赫利條件(一般電子技術(shù)
2025-08-05 10:03
【總結(jié)】信號(hào)與系統(tǒng)——多媒體教學(xué)課件(第三章Part4)2023年3月28日寧波大學(xué)信息科學(xué)與工程學(xué)院第3章連續(xù)時(shí)間信號(hào)與系統(tǒng)的傅里葉分析?引言?連續(xù)周期信號(hào)的傅里葉級(jí)數(shù)表示?練習(xí)一2023年3月28日寧波大學(xué)信息科學(xué)與工程學(xué)院第3章連續(xù)時(shí)間信號(hào)與系統(tǒng)的傅里葉分析?連續(xù)非周期信號(hào)的傅里葉變換
2025-03-09 13:56
【總結(jié)】第10章動(dòng)態(tài)電路的復(fù)頻率分析1.學(xué)習(xí)指導(dǎo)教學(xué)目的與要求一、教學(xué)目的在學(xué)習(xí)了拉普拉斯正變換、反變換、拉氏變換基本性質(zhì)后,將KCL、KVL電路定律以及電路元件的伏安特性關(guān)系(VCR)表示為復(fù)頻域形式,從而將時(shí)域的電路分析問(wèn)題轉(zhuǎn)化為在復(fù)頻域進(jìn)行,在得出復(fù)頻域結(jié)果后,經(jīng)過(guò)拉氏反變換得到時(shí)域的解。這樣可以利用直流電路的分析方法,使分析過(guò)程變?yōu)楹?jiǎn)單
2025-01-19 09:45
【總結(jié)】第1頁(yè)123,,npppp§拉普拉斯逆變換第2頁(yè)由象函數(shù)求原函數(shù)(即求拉普拉斯反變換)的方法:部分分式展開(kāi)法F(s)通常為s的有理分式,一般形式為()()()AsFsBs?零點(diǎn):極點(diǎn):123,,mzzzz123,,npppp1
2025-01-20 06:12
【總結(jié)】拉普拉斯變換在微分方程中的應(yīng)用王彥朋(寶雞文理學(xué)院數(shù)學(xué)系,陜西寶雞721013)摘要:利用了拉普拉斯變換及其它的性質(zhì),討論了它在線性時(shí)不變系統(tǒng)的時(shí)域響應(yīng)和電路分析中的應(yīng)用.關(guān)鍵詞:拉普拉斯變換;微分方程;電路分析隨著計(jì)算機(jī)的飛速發(fā)展,,,數(shù)字電路、,拉普拉斯變換是分析這類系統(tǒng)極為有效的方法,從而給學(xué)習(xí)使用者在應(yīng)用上帶來(lái)很大的方便.1拉普
2025-06-25 02:24
【總結(jié)】傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號(hào)處理、概率論、統(tǒng)計(jì)學(xué)、密碼學(xué)、聲學(xué)、光學(xué)、海洋學(xué)、結(jié)構(gòu)動(dòng)力學(xué)等領(lǐng)域都有著廣泛的應(yīng)用(例如在信號(hào)處理中,傅里葉變換的典型用途是將信號(hào)分解成幅值分量和頻率分量)。傅里葉變換能將滿足一定條件的某個(gè)函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。傅里
2025-04-04 02:06
【總結(jié)】目錄引言................................................................11拉普拉斯變換以及性質(zhì)..............................................1拉普拉斯變換的定義.................................................
2025-06-24 22:59
【總結(jié)】Laplace變換在微分方程(組)求解范例引言Laplace變換是由復(fù)變函數(shù)積分導(dǎo)出的一個(gè)非常重要的積分變換,它在應(yīng)用數(shù)學(xué)中占有很重要的地位,特別是在科學(xué)和工程中,有關(guān)溫度、電流、熱度、,我們給出了Laplace變換的概念以及一些性質(zhì).Laplace變換的定義設(shè)函數(shù)f(x)在區(qū)間上有定義,為函數(shù)的Laplace變換,稱為原函數(shù),稱為象函數(shù),并記為.性質(zhì)1(La
2025-04-08 23:29
【總結(jié)】信號(hào)與系統(tǒng)——多媒體教學(xué)課件(第三章Part1)2023年3月28日寧波大學(xué)信息科學(xué)與工程學(xué)院主要內(nèi)容?傅里葉級(jí)數(shù)和傅里葉級(jí)數(shù)的性質(zhì)?傅里葉變換和傅里葉變換的性質(zhì)?周期信號(hào)和非周期信號(hào)的頻譜分析?卷積定理和連續(xù)時(shí)間LTI系統(tǒng)的頻域分析2023年3月28日寧波大學(xué)信息科學(xué)與工程學(xué)院概述?
2025-03-09 13:50
【總結(jié)】1第九章拉普拉斯變換§Laplace變換的應(yīng)用及綜合舉例§Laplace變換的應(yīng)用及綜合舉例三、利用Matlab實(shí)現(xiàn)Laplace變換一、求解常微分方程(組)二、綜合舉例*2第九章
2025-01-19 14:37
【總結(jié)】13-1拉普拉斯變換的定義第13章拉普拉斯變換13-2拉普拉斯變換的性質(zhì)13-3拉普拉斯反變換13-4運(yùn)算電路13-5應(yīng)用拉普拉斯變換分析電路§13-1拉普拉斯變換的定義對(duì)于一階電路、二階電路,根據(jù)基爾霍夫定律和元件的VCR列出微分方程,根據(jù)換路后動(dòng)態(tài)元件
2025-01-19 15:37
【總結(jié)】§13.3拉普拉斯反變換的部分分式展開(kāi)拉普拉斯反變換:即由F(S)求其原函數(shù)f(t)??????jcjcstdsesFjtf)(21)(?對(duì)函數(shù)f(t)進(jìn)行拉氏變換為:)()()]([0sFdtetftfLst?????????????jcj
2025-07-25 14:18
【總結(jié)】 傅里葉變換和拉普拉斯變換地性質(zhì)及應(yīng)用 實(shí)用標(biāo)準(zhǔn)文檔 文案大全 利用變換可簡(jiǎn)化運(yùn)算,比如對(duì)數(shù)變換,極坐標(biāo)變換等。類似的,變換也存在于工程,技術(shù)領(lǐng)域,它就是積分變換。積分變換的使用,可以使求...
2025-01-11 22:05