【總結(jié)】第8課時(shí)雙曲線的簡(jiǎn)單性質(zhì),并能利用這些簡(jiǎn)單幾何性質(zhì)求標(biāo)準(zhǔn)方程..,提高解方程組和計(jì)算的能力,能利用雙曲線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì),解決與雙曲線有關(guān)的實(shí)際問題,提高分析問題與解決問題的能力.如圖,某工廠有一雙曲線型自然通風(fēng)塔,其外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,已知該塔最小半徑
2024-12-04 23:43
【總結(jié)】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.能運(yùn)用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程;2.會(huì)運(yùn)用幾何性質(zhì)求離心率;3.能解決與橢圓幾何性質(zhì)有關(guān)的實(shí)際問題;4.了解橢圓的第二定義及焦點(diǎn)與準(zhǔn)線間關(guān)系.【課前預(yù)習(xí)】1.與橢圓??0122
2024-11-20 00:31
【總結(jié)】橢圓的幾何性質(zhì)(二)一、基礎(chǔ)過關(guān)1.橢圓x2+my2=1的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則m等于()B.2C.42.已知橢圓x24+y2=1的焦點(diǎn)為F1、F2,點(diǎn)M在該橢圓上,且MF1→·MF2→=0,則點(diǎn)M到y(tǒng)軸的距離
2024-12-03 11:30
【總結(jié)】復(fù)習(xí)::到兩定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)的動(dòng)點(diǎn)的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點(diǎn)在X軸上時(shí)當(dāng)焦點(diǎn)在Y軸上時(shí))0(12222????babyax)0(12222????
2024-11-17 23:32
2024-11-18 08:57
【總結(jié)】橢圓的幾何性質(zhì)(一)一、基礎(chǔ)過關(guān)1.已知點(diǎn)(3,2)在橢圓x2a2+y2b2=1上,則()A.點(diǎn)(-3,-2)不在橢圓上B.點(diǎn)(3,-2)不在橢圓上C.點(diǎn)(-3,2)在橢圓上D.無法判斷點(diǎn)(-3,-2)、(3,-2)、(-3,2)是否在橢圓上2
【總結(jié)】雙曲線的簡(jiǎn)單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】理解并掌握雙曲線的幾何性質(zhì).【重點(diǎn)難點(diǎn)】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P56~P58,文P49~P51找出疑惑之處)復(fù)習(xí)1:寫出滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程:①3,4ab??,焦點(diǎn)在x軸上;②焦點(diǎn)在
2024-12-05 06:47
【總結(jié)】導(dǎo)數(shù)及其應(yīng)用第一章一.創(chuàng)設(shè)情景為了描述現(xiàn)實(shí)世界中運(yùn)動(dòng)、過程等變化著的現(xiàn)象,在數(shù)學(xué)中引入了函數(shù),隨著對(duì)函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學(xué)中四類問題的處理直接相關(guān):一、已知物體運(yùn)動(dòng)的路程作為時(shí)間的函數(shù),求物體在任意時(shí)刻的速度與加速度等;二、求曲線的切線;三、求已知函數(shù)的最大值與最小值
2024-11-17 11:59
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2020-2020學(xué)年高中數(shù)學(xué)雙曲線及其標(biāo)準(zhǔn)方程課后知能檢測(cè)新人教B版選修1-1一、選擇題1.(2020·臺(tái)州高二檢測(cè))設(shè)動(dòng)點(diǎn)P到A(-5,0)的距離與它到B(5,0)距離的差等于6,則P點(diǎn)的軌跡方程是()29-y216=129-x216
2024-11-19 10:30
【總結(jié)】課件制作者:羅定中學(xué)姚仕森橢圓的定義及其定理太空中有些天體運(yùn)行的軌道是橢圓形的。生活中的橢圓油罐車的橫截面是橢圓數(shù)學(xué)實(shí)驗(yàn)取一條細(xì)繩,把它的兩端固定在板上的兩點(diǎn),把細(xì)繩拉緊,在板上慢慢移動(dòng)用鉛筆尖奎屯王新敞新疆就可以畫出一個(gè)橢圓。橢圓及其標(biāo)準(zhǔn)方程2F1FM答:兩個(gè)定點(diǎn),繩長(zhǎng).
2024-11-17 17:35
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):使學(xué)生進(jìn)一步了解雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程教學(xué)重點(diǎn):根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線標(biāo)準(zhǔn)形式中a,b,c間的關(guān)系.教學(xué)難點(diǎn):用雙曲線的標(biāo)準(zhǔn)方程處理簡(jiǎn)單的實(shí)際問題.教學(xué)過程:一、復(fù)習(xí)提問1.雙曲線的標(biāo)準(zhǔn)方程:
【總結(jié)】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動(dòng)過程中,在某時(shí)刻的瞬時(shí)速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個(gè)統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:);()
2024-11-18 12:09
【總結(jié)】函數(shù)的極值與導(dǎo)數(shù)aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0,那么函數(shù)y=f(x)在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)
2024-11-18 12:08
【總結(jié)】拋物線的幾何性質(zhì)(二)一、基礎(chǔ)過關(guān)1.已知拋物線y2=2px(p0),過其焦點(diǎn)且斜率為1的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為()A.x=1B.x=-1C.x=2D.x=-22.已知拋物線y2=2px(p0
【總結(jié)】拋物線的幾何性質(zhì)(一)一、基礎(chǔ)過關(guān)1.設(shè)點(diǎn)A為拋物線y2=4x上一點(diǎn),點(diǎn)B(1,0),且|AB|=1,則A的橫坐標(biāo)的值為()A.-2B.0C.-2或0D.-2或22.以x軸為對(duì)稱軸的拋物線的通徑(過焦點(diǎn)且與x軸垂直的弦)長(zhǎng)為8,若拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),則其方程為