【總結(jié)】橢圓單元練習(xí)卷一、選擇題:1.已知橢圓1162522??yx上的一點(diǎn)P,到橢圓一個焦點(diǎn)的距離為3,則P到另一焦點(diǎn)距離為()A.2B.3C.5D.72.中心在原點(diǎn),焦點(diǎn)在橫軸上,長軸長為4,短軸長為2,則橢圓方程是()A.22143xy??B.2
2024-11-15 13:24
【總結(jié)】§橢圓的簡單幾何性質(zhì)課時安排5課時從容說課本節(jié)主要是通過對橢圓的標(biāo)準(zhǔn)方程的討論,研究橢圓的幾何性質(zhì),而這種依據(jù)曲線的方法去討論曲線的幾何性質(zhì)是學(xué)習(xí)解析幾何以來的第一次,因此在教學(xué)中,不僅要注意對研究結(jié)果的理解和應(yīng)用,而且應(yīng)注意對研究方法的學(xué)習(xí).由于學(xué)生己對由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖象的特點(diǎn)比較熟悉,所以在學(xué)習(xí)由
2024-12-08 22:39
【總結(jié)】事例:主人邀請張三、李四、王五三個人吃飯聊天,時間到了,只有張三和李四兩人準(zhǔn)時趕到,王五打來電話說:“臨時有急事,不能來了?!敝魅寺犃穗S口說了句:“你看看,該來的沒有來?!睆埲犃?,臉色一沉,起來一聲不吭地走了;主人愣了片刻,又道:“哎,不該走的又走了。”李四聽了大怒,拂袖而去。你能用邏輯學(xué)原理解釋這兩人離去的原因嗎?這就是今天我們來學(xué)習(xí)常
2024-11-18 12:16
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用yxoQPQQ)(xfy?Tyxo)(xfy?P相交再來一次直線PQ的斜率為xyxxxyyyxxyykPQPQPQ?????????????0000)()(PQ無限靠近切線PTxykk
2024-11-17 20:11
【總結(jié)】東莞市樟木頭中學(xué)李鴻艷掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo);培養(yǎng)學(xué)生分析、歸納、推理等能力雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程在與橢圓的類比中獲得雙曲線的知識,從而培養(yǎng)學(xué)生分析、歸納、推理等能力重點(diǎn)難點(diǎn)目標(biāo)探究思考觀察動畫,類比橢圓定義,總結(jié)雙曲線定義平
2024-11-19 16:14
【總結(jié)】2020/12/25§(一)2020/12/25復(fù)習(xí)思考?、標(biāo)準(zhǔn)方程是什么??平面上到兩個定點(diǎn)的距離的和(2a)等于定長(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2c)。)0(12222????bab
2024-11-18 12:09
【總結(jié)】變化率問題問題1氣球膨脹率在吹氣球的過程中,可發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加得越來越慢.從數(shù)學(xué)的角度,如何描述這種現(xiàn)象呢?氣球的體積V(單位:L)與半徑r(單位:dm)之間的函數(shù)關(guān)系是.34)(V3rr??若將半徑r表示為體積V的函數(shù),那么.4V
2024-11-22 01:33
【總結(jié)】1課時1.1.3算法的三種基本邏輯結(jié)構(gòu)和框圖表示第1課時順序結(jié)構(gòu)與條件分支結(jié)構(gòu)【學(xué)習(xí)要求】1.進(jìn)一步熟悉程序框圖的畫法.2.掌握順序結(jié)構(gòu)與條件分支結(jié)構(gòu)的程序框圖的畫法.3.能用這兩種結(jié)構(gòu)框圖描述實際問題.【學(xué)法指導(dǎo)】通過模仿、操作、探索,經(jīng)歷通過設(shè)計順序結(jié)構(gòu)、條件分支結(jié)構(gòu)程序框圖表達(dá)解決問題
2024-11-18 08:10
【總結(jié)】第二章第1課時一、選擇題1.已知點(diǎn)F1(0,-13)、F2(0,13),動點(diǎn)P到F1與F2的距離之差的絕對值為26,則動點(diǎn)P的軌跡方程為()A.y=0B.y=0(|x|≥13)C.x=0(|y|≥13)D.以上都不對[答案]C[解析]∵||PF1|-|PF2||
2024-12-08 02:45
【總結(jié)】第二章第1課時一、選擇題1.平面內(nèi)到定點(diǎn)F的距離等于到定直線l的距離的點(diǎn)的軌跡是()A.拋物線B.直線C.拋物線或直線D.不存在[答案]C[解析]當(dāng)F∈l上時,是直線,當(dāng)F?l上時,是拋物線.2.頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為坐標(biāo)軸,又過點(diǎn)(-2,3)的拋物線
2024-12-07 20:55
【總結(jié)】第二章第1課時一、選擇題1.已知F1、F2為兩定點(diǎn),|F1F2|=4,動點(diǎn)M滿足|MF1|+|MF2|=4,則動點(diǎn)M的軌跡是()A.橢圓[答案]D[解析]∵|MF1|+|MF2|=|F1F2|,∴動點(diǎn)M的軌跡是線段F1F2.2.橢圓的兩個焦點(diǎn)
【總結(jié)】第三章第1課時一、選擇題1.函數(shù)y=xlnx在區(qū)間(0,1)上是()A.單調(diào)增函數(shù)B.單調(diào)減函數(shù)C.在(0,1e)上是減函數(shù),在(1e,1)上是增函數(shù)D.在(0,1e)上是增函數(shù),在(1e,1)上是減函數(shù)[答案]C[解析]f′(x)=lnx+1,當(dāng)0
【總結(jié)】橢圓的簡單幾何性質(zhì)(三)直線與圓有那些位置關(guān)系?如何判斷直線與圓的位置關(guān)系?提問:直線與橢圓有那些位置關(guān)系?如何判斷直線與橢圓的位置關(guān)系?探究一當(dāng)m取何值時,直線l:y=x+m與橢圓C:9x2+16y2=144相離、相切、相交?該點(diǎn)的坐標(biāo)。最小距離是多少?并求,到直線的距離最???問橢圓上是否存在一
2024-11-18 01:22
【總結(jié)】橢圓的幾何性質(zhì)(一)一、基礎(chǔ)過關(guān)1.已知點(diǎn)(3,2)在橢圓x2a2+y2b2=1上,則()A.點(diǎn)(-3,-2)不在橢圓上B.點(diǎn)(3,-2)不在橢圓上C.點(diǎn)(-3,2)在橢圓上D.無法判斷點(diǎn)(-3,-2)、(3,-2)、(-3,2)是否在橢圓上2
2024-12-03 11:30
【總結(jié)】橢圓的幾何性質(zhì)(二)一、基礎(chǔ)過關(guān)1.橢圓x2+my2=1的焦點(diǎn)在x軸上,長軸長是短軸長的2倍,則m等于()B.2C.42.已知橢圓x24+y2=1的焦點(diǎn)為F1、F2,點(diǎn)M在該橢圓上,且MF1→·MF2→=0,則點(diǎn)M到y(tǒng)軸的距離