【總結】引例問題1從甲、乙、丙3名同學中選出2名參加某天的一項活動,其中1名同學參加上午的活動,1名同學參加下午的活動,有多少種不同的方法?第1步,確定參加上午活動的同學,從3人中任選1人有3種方法;第2步,確定參加下午活動的同學,只能從余下的2人中選,有2種方法.
2025-11-02 09:01
【總結】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2025-10-12 11:00
【總結】排列組合常見題型及解題策略一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學生報名參加數(shù)學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學生參加爭奪數(shù)學、
2025-08-04 18:28
【總結】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達式應該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結】排列組合綜合問題教學目標通過教學,學生在進一步加深對排列、組合意義理解的基礎上,掌握有關排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學會分類討論的思想.教學重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學用具投影儀.教學過程設計(一)引入師:現(xiàn)在我們大家已經學習和掌握了一些排列問題和組
2025-03-25 02:37
【總結】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【總結】§排列、組合及其應用要點梳理(1)排列的定義:從n個的元素中取出m(m≤n)個元素,按照一定的排成一列,叫做從n個不同的元素中取出m個元素的一個排列.(2)排列數(shù)的定義:從n個不同的元素中取出m(m≤n)個元素的的個數(shù)叫做從
2025-08-05 19:06
【總結】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個??例15:計劃在某畫廊展開10幅不同的畫,
2025-11-01 22:56
【總結】從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【總結】第一篇:有趣的排列組合 三年級上冊《數(shù)學廣角》 有趣的排列組合教學內容:人教版三年級上冊數(shù)學廣角 教學目標: 1、結合具體情景,通過觀察、猜測、實驗等數(shù)學活動,能有序地找 出簡單的組合數(shù)。 ...
2025-10-16 17:55
【總結】12除做到:排列組合分清,加乘原理辯明,避免重復遺漏外,還應注意積累排列組合問題得以快速準確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結】歐洲杯是國家隊之間進行的比賽.類似于亞洲杯,非洲杯.每四年舉辦一界.一般是在六月中旬開賽.歷經15-20天.參賽隊為16只,主客場制問要打幾場比賽?北京一日游有北京天安門、故宮、天壇、頤和園四個項目,問導游有幾種安排方式?六位密碼鎖可以設定幾種密碼?要回答這些問題,就要要用到分類計數(shù)原理與分步計數(shù)原理.
2025-08-05 07:17
【總結】解排列組合的問題一般的思考過程如下:元素放進位置(1)弄清楚要做什么事.(2)怎么做才能完要做的事.(熟悉兩個計數(shù)原理)即采取分步還是分類,或分步分類同時進行。(3)確定每一類或每一步是有序(排列)還是無序(組合)問題。元素總數(shù)多少,取多少個元素。(4)掌握一些常用的解題策略。常用的解題策略
2025-08-15 23:54
【總結】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個有5個獨唱節(jié)目和3個舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個舞蹈節(jié)目不連排,則不同的排法有幾種?小結:當排列或組合問題中,若某些元素或某些位置有特殊要求的時候,那么,一般先按排這些特殊元素或位置,然后再
2025-08-05 19:14
【總結】相鄰元素捆綁策略例.7人站成一排,其中甲乙相鄰且丙丁相鄰,共有多少種不同的排法.甲乙丙丁由分步計數(shù)原理可得共有種不同的排法55A22A22A=480解:可先將甲乙兩元素捆綁成整體并看成一個復合元素,同時丙丁也看成一個復合元素,
2025-08-05 07:27