【總結(jié)】練習(xí):1、判斷以下說法對錯:(1)一個平面內(nèi)只有一對不共線向量可作為表示該平面所有向量的基底。()(2)一個平面內(nèi)有無數(shù)多對不共線向量可作為表示該平面所有向量的基底。()(3)零向量不可作為基底中的向量。()對對錯B課堂練習(xí)
2024-11-09 00:20
【總結(jié)】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-12 17:25
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件26《平面向量的坐標表示與運算》?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標表示要點·疑點·考點
2024-11-10 00:27
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2024-11-12 16:44
【總結(jié)】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標如何表示?坐標(x,y)一一對應(yīng)向量a1.以原點O為起點作OA=a,點A的位置由誰確定?2.點A的坐標與向量a的坐標有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【總結(jié)】課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復(fù)習(xí)·課標版·A數(shù)學(xué)(理)課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復(fù)習(xí)·課標版·A數(shù)學(xué)(理)考綱要求考情分析本定理及其意義.2.掌握平面向量的正交分解及其坐標表示.3.會用坐
2025-07-24 07:57
【總結(jié)】永春三中王門鋅平面向量數(shù)量積的坐標表示1、向量加法三角形法則a+b=(x1+x2,y1+y2)2、向量減法三角形法則a–b=(x1–x2,y1–y2)3、實數(shù)與向量的積
2024-11-10 03:15
【總結(jié)】平面向量的基本定理及坐標表示平面向量共線的坐標表示課標點擊平面向量共線的坐標表示預(yù)習(xí)導(dǎo)學(xué)典例精析課堂導(dǎo)練課堂小結(jié)1.理解向量共線定理.2.掌握兩個向量平行(共線)的坐標表示和會應(yīng)用其求解有關(guān)兩向量
2025-07-25 14:48
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-18 12:17
【總結(jié)】復(fù)習(xí):共線向量基本定理:向量與向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【總結(jié)】平面向量基本定理復(fù)習(xí)回顧:1、兩個向量共線的充要條件:與非零向量共線的充要條件是,使得有且只有一個實數(shù)如果,是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù),,使得
【總結(jié)】《平面向量共線的坐標表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標運算延伸的作用,它是在學(xué)生對平面向量的基本定理有了充分的認識和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標表示則為用“數(shù)”的運算處理“形”的問題搭建了橋梁,同時也為定比分點坐標公式和中點坐標公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標表示,對立體幾何教材也有著深遠的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
2024-11-11 21:09
【總結(jié)】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【總結(jié)】平面向量的坐標表示及運算(2)),(yxMOxy課前復(fù)習(xí):2加、減法法則.a+b=(x2,y2)+(x1,y1)=(x2+x1,y2+y1)3實數(shù)與向量積的運算法則:λa=λ(xi+yj)=λxi+λyj=(λx,λy)4向量坐標:若A(x1,y1),B(x2,
2024-10-19 17:16