freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

jvfaaa113三個(gè)正數(shù)的算術(shù)--幾何平均不等式-課件(人教a選修4-5)-wenkub

2022-08-21 12:22:19 本頁面
 

【正文】 + ? + ann≥ 當(dāng)且僅當(dāng) 時(shí),等號成立. a= b = c 不小于 n a1 ? a n a1= a2= … = an 3 abc [小問題 大思維 ] 1 .滿足不等式a + b + c3≥3abc 成立的 a , b , c 的范圍是什么? 提示: a, b, c的范圍為 a≥ 0, b≥ 0, c≥ 0. 2.應(yīng)用三個(gè)正數(shù)的算術(shù) —幾何平均不等式,求最值應(yīng)注意 什么? 提示: 三個(gè)正數(shù)的和為定值,積有最大值;積為定值,和有最小值.當(dāng)且僅當(dāng)三個(gè)正數(shù)相等時(shí)取得. [例 1] 已知 x∈ R+ ,求函數(shù) y= x(1- x2)的最大值. [ 精講詳析 ] 本題考查三個(gè)正數(shù)的算術(shù) — 幾何平均不等式在求最值中的應(yīng)用.解答本題要根據(jù)需要拼湊出利用其算術(shù) — 幾何平均不等式的條件,然后再求解. ∵ y = x (1 - x2) , ∴ y2= x2(1 - x2)2= 2 x2(1 - x2)(1 - x2) x 1a + c> 0 , ∴ ( a + b + c )(1a + b+1b + c+1a + c) ≥92. 當(dāng)且僅當(dāng) a = b = c 時(shí),等號成立. [悟一法 ] 三個(gè)正數(shù)的算術(shù) —幾何平均不等式定理,是根據(jù)不等式的意義、性質(zhì)和比較法證出的,因此,凡是可以利用該定理證明的不等式,一般都可以直接應(yīng)用比較法證明,只是在具備條件時(shí),直接應(yīng)用該定理會更簡便.若不直接具備 “一正二定三相等 ”的條件,要注意經(jīng)過適當(dāng)?shù)暮愕茸冃魏笤偈褂枚ɡ碜C明. 連續(xù)多次使用平均不等式定理時(shí)要注意前后等號成立的條件是否保持一致. [通一類 ] 證明: ∵ 0 a 1 , ∴ 1 - a 0. ∴ 0 a (1 - a ) ≤ [a + ? 1 - a ?2]2=14. 同理 0 b (1 - b ) ≤14, 0 c (1 - c ) ≤14 將以上三個(gè)不等式相乘得 abc (1 - a )(1 - b )(1 - c ) ≤ (14)3
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1