【總結(jié)】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實際問題.其中,以不等式(組)為工具分析問題、解決問題是重點(diǎn),也是教學(xué)中的主要難點(diǎn);一元一次不等式(組)及其相關(guān)概念、不等式的性質(zhì)是基礎(chǔ)知識;掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【總結(jié)】不等式與不等式典型例題例320xxm??????有解,則m的取值范圍是:。010axx???????無解,則a的取值范圍是:。例202350xabxab?????????的解集為-1x&
2025-07-23 23:04
【總結(jié)】第二十講不等式與不等式組,并把解在數(shù)軸上表示出來.61232???xx1325??x<⑴⑵3x+5>5(x-1)356634xx???①②3x-m≤0的正整數(shù)解是1,2,3,求m的取值范圍.x的不等式組x-a≥
2025-11-10 12:04
【總結(jié)】 2018中考數(shù)學(xué)知識點(diǎn):不等式的解集 ? 不等式的解集: ?、倌苁共坏仁匠闪⒌奈粗獢?shù)的值,叫做不等式的解。 ?、谝粋€含有未知數(shù)的不等式的所有解,組成這個不等式的解集。 ?、矍蟛?..
2024-12-02 22:02
【總結(jié)】第三節(jié):二元一次不等式組與簡單的線性規(guī)劃1、二元一次不等式表示的區(qū)域:二元一次不等式Ax+By+C0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域。注意:由于對直線同一側(cè)的所有點(diǎn)(x,y),把它代入Ax+By+C,所得實數(shù)的符號都相同,所以只需在此直線的某一側(cè)取一個特殊點(diǎn)(x0,y0),從Ax0+By0+C的正負(fù)可以判斷出Ax+By+C0表示哪
2025-06-23 07:26
【總結(jié)】12.掌握利用導(dǎo)數(shù)解決實際生活中的優(yōu)化問題的方法和步驟,如用料最少、費(fèi)用最低、消耗最省、利潤最大、效率最高等..掌握導(dǎo)數(shù)與不等式、幾何等綜合問題的解題方法.????21(0)31
2025-09-19 08:09
【總結(jié)】期末復(fù)習(xí)(五)不等式與不等式組考點(diǎn)一一元一次不等式的解法【例1】解不等式-≤1,并把它的解集在數(shù)軸上表示出來.【分析】解不等式一般會涉及去括號和去分母,去括號時應(yīng)注意去括號法則的正確使用,去分母時應(yīng)注意每一項都要乘最簡公分母.【解答】去分母,得2(2x-1)-3(5x+1)≤6.去括號,得4x-2-15x-3≤6.移項,合并同類項得-11x≤11.系數(shù)
2025-04-29 08:55
【總結(jié)】初一數(shù)學(xué)不等式與不等式組 中考數(shù)學(xué):不等式與不等式組 1不等式的概念、性質(zhì)及解集的表示1、不等式一般地,用符號“”(或“≥”)以及“≠”連接的式子叫做不等式。能使不等式成立的未知數(shù)的值...
2024-12-03 22:28
【總結(jié)】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當(dāng)且僅當(dāng)時取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【總結(jié)】不等式與不等式組復(fù)習(xí)課呂河初中袁文宏請選擇自己喜歡的方式(邊閱讀教科書邊思考或先閱讀教科書后思考)用5分鐘時間回憶本章內(nèi)容,嘗試解決下面問題:(1)本章都學(xué)習(xí)了哪些概念?哪些運(yùn)算?你想對同伴做哪些友情提示?(2)你準(zhǔn)備建構(gòu)怎樣的知識網(wǎng)絡(luò)圖描述本章知識點(diǎn)之間的聯(lián)系
2024-12-07 17:25
【總結(jié)】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2025-10-20 03:11
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書九年級復(fù)習(xí)課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2025-10-03 13:38
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2025-10-25 17:10
【總結(jié)】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)
2025-03-25 00:14
【總結(jié)】(第一課時)一、學(xué)習(xí)目標(biāo):1.比較實數(shù)大小的方法(1)作差法(2)作商法:2.不等式性質(zhì):性質(zhì)1性質(zhì)2性質(zhì)3性質(zhì)4性質(zhì)5二、典型例題例1.判斷下列命題是否正確,并說明理由(1)若,則(2)若,,則(3)若,則或填空(1)若,則(2)若,則(3)若則
2025-08-17 08:52