【總結(jié)】 數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案 二次函數(shù)的基本表示形式為y=ax2+bx+c(a≠0)。二次函數(shù)最高次必須為二次, 二次函數(shù)的圖像是一條對稱軸與y軸平行或重合于y軸的拋物線。二次函數(shù)表達(dá)...
2024-11-18 23:43
【總結(jié)】1第一部分二次函數(shù)基礎(chǔ)知識?相關(guān)概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實數(shù).?二次函數(shù)2yaxbxc???的結(jié)構(gòu)特征:⑴等
2025-10-11 20:45
【總結(jié)】函數(shù)的單調(diào)性與二次函數(shù)重難點知識歸納(一)函數(shù)的單調(diào)性1、單調(diào)增函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個區(qū)間A上,如果對于任意兩數(shù)x1,x2∈A,當(dāng)x1x2時,都有f(x1)f(x2),那么,就稱函數(shù)y=f(x)在區(qū)間A上是增加的,有時也稱函數(shù)y=f(x)在區(qū)間A上是遞增的.2、單調(diào)減函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個區(qū)間A上,如果對于任意兩
2025-06-18 20:41
【總結(jié)】 冪函數(shù)與二次函數(shù)基礎(chǔ)梳理1.冪函數(shù)的定義一般地,形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中底數(shù)x是自變量,α為常數(shù).2.冪函數(shù)的圖象在同一平面直角坐標(biāo)系下,冪函數(shù)y=x,y=x2,y=x3,y=x,y=x-1的圖象分別如右圖.解析式f(x)=ax2+bx+c(a0)f(x)=ax2+bx+c(a0)圖象定義域(-∞,+∞
2025-06-20 06:07
【總結(jié)】二次函數(shù)小結(jié)一、二次函數(shù)的定義一般地,如果y=ax2+bx+c(a、b、c是常數(shù),a≠0),那么y叫做x二次函數(shù)。注:二次函數(shù)y=ax2+bx+c的結(jié)構(gòu)特征:等號左邊是函數(shù),右邊是關(guān)于自變量x的二次式,的最高次數(shù)是2;二次項系數(shù)a≠0。二、二次函數(shù)的圖象及畫法1、二次函數(shù)y=ax2+bx+c(a≠0)的圖象是以為頂點,以直線x
2025-08-04 10:28
【總結(jié)】二次函數(shù)應(yīng)用②1.心理學(xué)家發(fā)現(xiàn),學(xué)生對概念的接受能力y和提出概念所用的時間x(單位:分)之間大體滿足函數(shù)關(guān)系式:(0≤x≤30)。y的值越大,表示接受能力越強(qiáng)。試根據(jù)關(guān)系式回答:(1)若提出概念用10分鐘,學(xué)生的接受能力是多少?(2)概念提出多少時間時?學(xué)生的接受能力達(dá)到最強(qiáng)?2.某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個
2025-07-26 03:42
【總結(jié)】1、二次函數(shù)所描述的關(guān)系教學(xué)內(nèi)容:P34~P37教學(xué)目標(biāo):1)經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗2)能夠表示簡單變量之間的二次函數(shù)關(guān)系3)能夠利用嘗試求值的方法解決實際問題,如猜測增種多少棵橙子樹可以使橙子的總產(chǎn)量最多的問題教學(xué)重點和難點重點:表示簡單變量之間的二次函數(shù)關(guān)系
2024-12-03 05:02
【總結(jié)】第二章二次函數(shù)1二次函數(shù)所描述的關(guān)系1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關(guān)系.(1)圓的半徑是xcm,圓的面積為ycm2,寫出y與x之間的函數(shù)關(guān)系式;xO(2)用總長為60m的籬笆圍成矩形場地,寫出場地面積y(m2)與矩形一邊長x(m)之間的函數(shù)關(guān)系式
2025-09-19 14:14
【總結(jié)】初三上冊數(shù)學(xué)知識點:“二次函數(shù)”教學(xué)設(shè)計教學(xué)任務(wù)分析教學(xué)目標(biāo)知識技能通過探究實際問題與二次函數(shù)關(guān)系,讓學(xué)生掌握利用頂點坐標(biāo)解決最大值(或最小值)問題的方法.?dāng)?shù)學(xué)思考1.通過研究生活中實際問題,讓學(xué)生體會建立數(shù)學(xué)建模的思想.2.通過學(xué)習(xí)和探究“矩形面積”“銷售利潤”問題
2024-11-22 04:10
【總結(jié)】二次函數(shù)的翻折變換黃石十中:王宇剛教學(xué)目標(biāo)(1)體會將一條拋物線沿x軸翻折的規(guī)律的發(fā)現(xiàn);(2)體會將一條拋物線沿直線y=m翻折的規(guī)律的發(fā)現(xiàn);(3)學(xué)會將一條拋物線隨意平移,翻折后得到的新的拋物線的解析式解法.(4)體會數(shù)學(xué)知識的內(nèi)在聯(lián)系.以及圖形的對稱美.
2024-11-22 01:47
【總結(jié)】§4二次函數(shù)性質(zhì)的再研究4.1二次函數(shù)的圖像學(xué)習(xí)導(dǎo)航學(xué)習(xí)目標(biāo)重點難點重點:二次函數(shù)圖像變換及求解析式.難點:對圖像變換的理解及圖像的應(yīng)用.新知初探·思維啟動1.二次函數(shù)的定義及解析式(1)二次函數(shù)的概念函數(shù)__________________
2024-11-09 02:28
【總結(jié)】4.2二次函數(shù)的性質(zhì)學(xué)習(xí)導(dǎo)航學(xué)習(xí)目標(biāo)重點難點重點:利用配方法研究y=ax2+bx+c的性質(zhì).難點:求二次函數(shù)在給定區(qū)間上的最大值、最小值.新知初探·思維啟動二次函數(shù)的性質(zhì)二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)如下表:a的符號
【總結(jié)】知識回顧?2。一次函數(shù)、正比例函數(shù)的定義是什么?噴泉(1)創(chuàng)設(shè)情境,導(dǎo)入新課(2)你們知道:投籃時,籃球運動的路線是什么曲線?怎樣計算籃球達(dá)到最高點時的高度?(1)你們喜歡打籃球嗎?問題:二次函數(shù)請用適當(dāng)?shù)暮瘮?shù)解析式表示下列問題情境中的兩個變量
2025-07-23 20:25
【總結(jié)】二次函數(shù)y=ax2+bx+c的圖象(一)說案xy108642024681012141618202224一、教材分析二、教法·學(xué)法分析三、教學(xué)過程分析四、板書設(shè)計五、評價分析
2024-11-19 07:50
【總結(jié)】實際問題與二次函數(shù)教案實驗中學(xué)李三紅教學(xué)目標(biāo):1.通過對實際問題情景的分析確定二次函數(shù)的表達(dá)式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實際問題的最值。復(fù)習(xí)回顧:1、二次函數(shù)的圖象是一條,
2024-11-23 12:40