【總結(jié)】第5課時(shí)解三角形的實(shí)際應(yīng)用、俯角、方向角、方位角等的含義.、余弦定理解決距離、高度、角度等的問題..中國的“海洋國土”面積約300萬平方公里,海洋權(quán)益在國家利益中的地位更加凸顯.近幾年,我國海軍先后參加了為打擊海盜進(jìn)行的亞丁灣護(hù)航,并開始走出近海,深入遠(yuǎn)海進(jìn)行演習(xí),實(shí)力在不斷增強(qiáng),為護(hù)
2024-12-08 02:37
【總結(jié)】§3解三角形的實(shí)際應(yīng)用舉例教學(xué)目標(biāo)1、掌握正弦定理、余弦定理,并能運(yùn)用它們解斜三角形。2、能夠運(yùn)用正弦定理、余弦定理進(jìn)行三角形邊與角的互化。3、培養(yǎng)和提高分析、解決問題的能力。教學(xué)重點(diǎn)難點(diǎn)1、正弦定理與余弦定理及其綜合應(yīng)用。2、利用正弦定理、余弦定理進(jìn)行三角形邊與角的互化。教學(xué)過程一、復(fù)習(xí)引入
2024-11-19 08:01
【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時(shí),主要內(nèi)容是探索基本不等式的生成和證明過程及其簡單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點(diǎn),它與線性規(guī)劃呈并列結(jié)構(gòu),可用來求某些函數(shù)的值域和最值,也可解決實(shí)際生活中的最優(yōu)化配置問題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【總結(jié)】北師大版解斜三角形復(fù)習(xí)、請回答下列問題(1)解斜三角形的主要理論依據(jù)是什么?正弦定理RCcBbAa2sinsinsin???余弦定理Abccbacos2222???Baccabcos2222???Cabbaccos2222???解斜三角形復(fù)習(xí)、請回答
2024-11-12 17:10
【總結(jié)】湖南省桃江四中高二數(shù)學(xué)《三角函數(shù)、平面向量、解三角形》練習(xí)題1時(shí)間:120分鐘滿分:150分姓名班級學(xué)號一、選擇題(每小題5分,共50分)()A. B. C. D.:,,,則與的夾角是() A. B. C. D.,且,則
2025-01-14 11:49
【總結(jié)】解不等式高考要求不等式要求層次重難點(diǎn)一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識內(nèi)容1.含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關(guān)系如下表(以為例):判別式
2025-07-24 02:03
【總結(jié)】第一篇:解斜三角形、正弦定理、余弦定理--馮自會 文尚學(xué)堂 文尚學(xué)堂學(xué)科教師輔導(dǎo)講義 講義編號***教學(xué)管理部***教學(xué)管理部***教學(xué)管理部 第二篇:正弦定理余弦定理[推薦] 正弦定理余弦...
2024-10-06 22:49
【總結(jié)】3.基本不等式的證明學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點(diǎn)C,使AC=a,CB=b,過點(diǎn)C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-17 19:03
【總結(jié)】復(fù)習(xí)課解三角形課時(shí)目標(biāo)、余弦定理的內(nèi)容,并能解決一些簡單的三角形度量問題.2.能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題.一、填空題1.在△ABC中,A=60°,a=43,b=42,則B=______________.2.三角形
2024-12-05 00:28
【總結(jié)】第2課時(shí)基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實(shí)際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【總結(jié)】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【總結(jié)】基本不等式課時(shí)目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時(shí)取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時(shí),等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),___
2024-12-05 06:37
【總結(jié)】200米高的山頂上,測得山下一塔頂與塔底的俯角分別為30°、60°,則塔高為()米33米33米米解析:在△ABC中,AB=200米,∠ACB=60°,∴CB=ABtan60°=2020=20033米,
2024-11-16 15:37
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時(shí),等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個(gè)正數(shù)的幾何平均數(shù)不大于它們的
2024-12-05 10:13
【總結(jié)】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)例導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】,抽象或構(gòu)造出三角形,標(biāo)出已知量、未知量,確定解三角形的方法;2.搞清利用正余弦定理可解決的各類應(yīng)用問題的基本圖形和基本等量關(guān)系.【學(xué)習(xí)重點(diǎn)】靈活應(yīng)用正、余弦定理及三角恒等變換解決實(shí)際生活中與解三角形有關(guān)的問題?!臼褂谜f明】1.規(guī)范
2024-11-19 15:46