【總結(jié)】第5節(jié)隱函數(shù)求導(dǎo)法則0),(.1?yxF0),,(.2?zyxF一、一個(gè)方程情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)恒能唯
2025-08-05 18:05
【總結(jié)】1糾正作業(yè)P98T8(8)dlnlnln,.dyyxx?求解:1(lnln)lnlnyxx???(ln)x?ln[ln(ln)]yx?11lnlnl(lnn)xxx???111lnlnlnxxx???P98T11(3)22d(arct
2025-07-24 09:56
【總結(jié)】上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院1由參數(shù)方程所確定的函數(shù)的求導(dǎo)法則一、求導(dǎo)法則二、典型例題三、小結(jié)上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院2(),().xtyxyt???????若參數(shù)方程確定與由參數(shù)方程間的所確
2025-07-24 03:18
【總結(jié)】第五節(jié)隱函數(shù)及參數(shù)方程確定函數(shù)的導(dǎo)數(shù)一隱函數(shù)求導(dǎo)法二對(duì)數(shù)求導(dǎo)法三參數(shù)方程確定函數(shù)的導(dǎo)數(shù)四小結(jié):.稱為隱函數(shù)所確定的函數(shù)由二元方程)(),(xyyyxF?形式稱為顯函數(shù).)(xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?如何求導(dǎo)?
2025-07-23 17:58
【總結(jié)】1第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示
2025-04-30 12:01
【總結(jié)】§解析函數(shù)的高階導(dǎo)數(shù)一個(gè)解析函數(shù)不僅有一階導(dǎo)數(shù),而且有各高階導(dǎo)數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示.這一點(diǎn)和實(shí)變函數(shù)完全不同.一個(gè)實(shí)變函數(shù)在某一區(qū)間上可導(dǎo),它的導(dǎo)數(shù)在這區(qū)間上是否連續(xù)也不一定,更不要說它有高階導(dǎo)數(shù)存在了.定理解析函數(shù)f(z)的導(dǎo)數(shù)仍為解析函數(shù),它的n階導(dǎo)數(shù)為
2025-05-10 14:16
【總結(jié)】目錄上頁下頁返回結(jié)束第四節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率隱函數(shù)和參數(shù)方程求導(dǎo)相關(guān)變化率第二章目錄上頁下頁返回結(jié)束一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的
【總結(jié)】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-12 21:33
【總結(jié)】一、一個(gè)方程的情形二、方程組的情形三、小結(jié)思考題第五節(jié)隱函數(shù)的求導(dǎo)公式0),(.1?yxF一、一個(gè)方程的情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點(diǎn)),
2025-08-11 16:41
【總結(jié)】高階導(dǎo)數(shù)1、顯函數(shù)的高階導(dǎo)數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導(dǎo)數(shù)一、顯函數(shù)高階導(dǎo)數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-05-13 06:01
【總結(jié)】高等數(shù)學(xué)教案第九章多元函數(shù)微分法及其應(yīng)用第五節(jié)隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形隱函數(shù)存在定理1設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)具有連續(xù)偏導(dǎo)數(shù),,,則方程在點(diǎn)的某一鄰域內(nèi)恒能唯一確定一個(gè)連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù),它滿足條件,并有.說明:1)定理證明略,現(xiàn)僅給
2025-08-05 18:49
【總結(jié)】考點(diǎn)分析:以解答題的形式考查函數(shù)的單調(diào)性和極值;近幾年高考對(duì)導(dǎo)數(shù)的考查每年都有,選擇題、填空題、解答題都出現(xiàn)過,且最近兩年有加強(qiáng)的趨勢。知識(shí)點(diǎn)一:常見基本函數(shù)的導(dǎo)數(shù)公式 ?。?)(C為常數(shù)), ?。?)(n為有理數(shù)), ?。?), ?。?), ?。?), ?。?), ?。?), (8),知識(shí)點(diǎn)二:函數(shù)四則運(yùn)算求導(dǎo)法則 設(shè),均可導(dǎo)?。?)和差的導(dǎo)
2025-03-25 05:12
【總結(jié)】第五節(jié)隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形二、方程組的情形三、由方程組確定的反函數(shù)的求導(dǎo)公式0),(.1?yxF隱函數(shù)存在定理1設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且則方程在點(diǎn)的某一鄰域內(nèi)恒能唯一確定一個(gè)單值連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù))(xf
2025-10-08 12:16
【總結(jié)】隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形二、方程組的情形一、一個(gè)方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內(nèi)確定了一個(gè)稱方程此時(shí)值與之對(duì)應(yīng)相應(yīng)地總有唯一的時(shí)取某一區(qū)間的任一值在一定條件下,當(dāng),滿足方
2025-01-20 05:31
【總結(jié)】第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實(shí)變函
2025-01-20 03:38