【總結(jié)】2.圓的對稱性(3)圓心角,弧,弦,弦心距之間的關系●O(1)圓是中心對稱圖形嗎?(2)如果是,它的對稱中心是什么?圓也是中心對稱圖形.它的對稱中心就是圓心.·O圓心角頂點在圓心的角(如∠AOB).圓心角的概念AB如圖,在⊙O中,分別作相等的圓心角∠AOB和
2025-10-28 14:26
【總結(jié)】線段、角的對稱性(4)例2已知:如圖,△ABC的兩內(nèi)角∠B、∠C的角平分線相交于點P.求證:點P在∠A的角平分線上.2lPDABCFE例3已知:如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足為E、F.求證:AD垂直平分EF.2lAF
2024-11-24 21:05
【總結(jié)】課時課題:第三章第2節(jié)圓的對稱性(第二課時)課型:新授課授課時間:2013年2月27日星期三第一節(jié)學習目標:1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關系的定理.教學重點與難點:重點:、弧、弦之間相等關系的定理.“同圓”或“等圓”的前提條件.難點:利用所學知識解決問題時忽視“同圓”或“等圓”的條件.教法
2025-08-17 05:29
【總結(jié)】圓的對稱性導學案學習目標:1、理解弧、優(yōu)弧、劣弧、圓心角等概念。掌握圓心角、弧、弦之間的關系定理及應用。掌握“垂直于弦的直徑平分這條弦所對的兩條弧”這一結(jié)論。2、通過教學內(nèi)容向?qū)W生滲透事物相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美,激發(fā)學生的求知欲。3、經(jīng)歷探索圓的對稱性及相關性質(zhì)的過程,培養(yǎng)學生實驗觀察、發(fā)現(xiàn)新問題,探究和解決問題的
2024-11-23 12:22
【總結(jié)】1/3第2課時圓的對稱性課時測評方案基礎練知識點一圓是軸對稱圖形1.選擇。(1)在下面的圖形中,()一定是軸對稱圖形。A.平行四邊形B.梯形C.圓(2)將下面物體的平面圖畫在紙上,()一定是軸對稱圖形。A.茶杯B.籃球
2025-08-10 14:49
【總結(jié)】函數(shù)的對稱性一、選擇題.如果函數(shù)的圖象關于點A(1,2)對稱,那么 ( )A.p=-2,n=4 B.p=2,n=-4C.p=-2,n=-4 D.p=2,n=4【答案】A.(山東省實驗中學2014屆高三上學期第二次診斷性測試數(shù)學(理)試題)函數(shù)對任意的圖象關于點對稱,則 ( ?。〢. B. C. D.0【答案】D.(山東省桓臺第二中學2014屆
2025-06-20 03:25
【總結(jié)】..圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5
2025-08-05 04:44
【總結(jié)】線段、角的對稱性(2)在一張薄紙上畫一條線段AB.你能找出與線段AB的端點A、B距離相等的點嗎?這樣的點有多少個?做一做BA一個點到一條線段的兩端的距離相等,那么這個點在這條線段的垂直平分線上嗎?想一想BAQM線段、角的對稱性(2)因為QA=QB,所以
【總結(jié)】一、對稱操作和對稱元素二、對稱性在化學中的應用三、群的定義四、化學中重要的點群五、群的表示六、特征標表七、群論在雜化軌道分子軌道理論的應用八、群論在振動光譜的應用第一章分子的對稱性和群論初步molecularsymmetryandgrouptheory對稱性是大自然賦予眾多宏觀和微觀物體的一種
2025-05-09 21:20
【總結(jié)】1高等無機化學2BartRosenberg,.1926-順鉑發(fā)現(xiàn)者Inrecognitionofhisoutstandingcontributiontomedicalresearchthroughhispioneer
2025-04-29 01:01
【總結(jié)】函數(shù)的對稱性一、有關對稱性的常用結(jié)論1、軸對稱(1)=函數(shù)圖象關于軸對稱;(2)函數(shù)圖象關于對稱;(3)若函數(shù)定義域為,且滿足條件,則函數(shù)的圖象關于直線對稱。2、中心對稱(1)=-函數(shù)圖象關于原點對稱;.(2)函數(shù)圖象關于對稱;(3)函數(shù)圖象關于成中心對稱(4)若函數(shù)定義域為,且滿足條件(為常數(shù)),則函數(shù)的圖象關于點對稱。二、
2025-06-18 23:35
【總結(jié)】專業(yè)資料分享函數(shù)的周期性與對稱性1、函數(shù)的周期性若a是非零常數(shù),若對于函數(shù)y=f(x)定義域內(nèi)的任一變量x點有下列條件之一成立,則函數(shù)y=f(x)是周期函數(shù),且2|a|是它的一個周期。①f(x+a)=f(x-a)②f(x+a)=-f(x)③f(x+a)=1/f(x)④f
2025-05-16 02:04
【總結(jié)】第三章分子對稱性與分子點群Chapter3.MolecularSymmetryandIntroductiontoGroupTheory生物界的對稱性對稱操作:對分子圖形進行某一操作,不改變其中任何兩點間的距離,作用后的圖形和作用前的圖形如果不經(jīng)過原子標號是不能區(qū)分的,這樣的操
2025-05-02 06:26
【總結(jié)】第四章分子對稱性與群論初步Chapter4.MolecularSymmetryandIntroductiontoGroupTheory第四章分子對稱性和分子點群Chapter4.MolecularSymmetryandPiontGroup對稱圖形的定義生物界的對稱
2025-08-11 14:09
【總結(jié)】義務教育課程標準實驗教科書SHUXUE九年級下湖南教育出版社觀察·OAB記作,AMB記作;AB如圖圓O上兩點A,B間的小于半圓的部分叫作劣弧,A,B間的大于半圓的部分叫作優(yōu)弧,其中M是圓上一點.M·
2024-11-28 22:58