【總結(jié)】一對(duì)稱的概念不對(duì)稱圖形不對(duì)稱圖形對(duì)稱圖形對(duì)稱:指物體或圖形中相同的部分之間有規(guī)律的重復(fù)。(1)所有的晶體都是對(duì)稱的;(2)晶體的對(duì)稱是有一定的限制的;二晶體對(duì)稱(3)晶體的對(duì)稱包含幾何意義,也包含物理意義。1特點(diǎn)(1
2025-01-14 20:37
【總結(jié)】ABCDO第2課時(shí)§圓的對(duì)稱性教學(xué)目標(biāo)1、經(jīng)歷探索圓的對(duì)稱性及相關(guān)性質(zhì),2、理解圓的對(duì)稱性及相關(guān)性質(zhì)3、進(jìn)一步體會(huì)和理解研究幾何圖形的各種方法教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):垂徑定理及其逆定理難點(diǎn):垂徑定理及其逆定理教學(xué)過程設(shè)計(jì)一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問
2024-12-03 05:24
【總結(jié)】第2課時(shí)§圓的對(duì)稱性知識(shí)目標(biāo):經(jīng)歷探索圓的對(duì)稱性及相關(guān)性質(zhì);理解圓的對(duì)稱性及相關(guān)性質(zhì)進(jìn)一步體會(huì)和理解研究幾何圖形的各種方法德育目標(biāo):培養(yǎng)學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和開拓進(jìn)取的精神能力目標(biāo):培養(yǎng)學(xué)生觀察、分析、探索能力和創(chuàng)造力教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):垂徑定理及其逆定理難點(diǎn):垂徑定理及其逆定理
2024-11-29 12:27
【總結(jié)】線段、角的對(duì)稱性(1)在一張薄紙上畫一條線段AB,操作并思考:線段是軸對(duì)稱圖形嗎?做一做BA線段是軸對(duì)稱圖形,它的對(duì)稱軸在哪里?為什么?想一想BA線段是軸對(duì)稱圖形,線段的垂直平分線是它的對(duì)稱軸.O21lBA線段、角的對(duì)稱性(1)21lPOBA想一想1.
2024-11-24 21:05
【總結(jié)】線段、角的對(duì)稱性(3)在一張薄紙上畫∠AOB,操作并思考:它是軸對(duì)稱圖形嗎?為什么?做一做AOB?OAB角是軸對(duì)稱圖形,它的對(duì)稱軸在哪里?為什么?想一想角是軸對(duì)稱圖形,角平分線所在的直線是它的對(duì)稱軸.OABC線段、角的對(duì)稱性(3)想一想如圖,
【總結(jié)】OABC你對(duì)角有哪些認(rèn)識(shí)?角是軸對(duì)稱圖形,對(duì)稱軸是角平線所在的直線.角的軸對(duì)稱性O(shè)角是軸對(duì)稱圖形,角平線所在的直線是它的對(duì)稱軸.PDE性質(zhì):角平分線上的點(diǎn)到角的兩邊的距離相等。OABCEDP∵OC平分∠AOB,點(diǎn)P在OC上,且
2025-01-14 12:05
【總結(jié)】2.圓的對(duì)稱性(3)圓心角,弧,弦,弦心距之間的關(guān)系●O(1)圓是中心對(duì)稱圖形嗎?(2)如果是,它的對(duì)稱中心是什么?圓也是中心對(duì)稱圖形.它的對(duì)稱中心就是圓心.·O圓心角頂點(diǎn)在圓心的角(如∠AOB).圓心角的概念A(yù)B如圖,在⊙O中,分別作相等的圓心角∠AOB和
2025-10-28 14:26
【總結(jié)】線段、角的對(duì)稱性(4)例2已知:如圖,△ABC的兩內(nèi)角∠B、∠C的角平分線相交于點(diǎn)P.求證:點(diǎn)P在∠A的角平分線上.2lPDABCFE例3已知:如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足為E、F.求證:AD垂直平分EF.2lAF
【總結(jié)】課時(shí)課題:第三章第2節(jié)圓的對(duì)稱性(第二課時(shí))課型:新授課授課時(shí)間:2013年2月27日星期三第一節(jié)學(xué)習(xí)目標(biāo):1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的定理.教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn):、弧、弦之間相等關(guān)系的定理.“同圓”或“等圓”的前提條件.難點(diǎn):利用所學(xué)知識(shí)解決問題時(shí)忽視“同圓”或“等圓”的條件.教法
2025-08-17 05:29
【總結(jié)】圓的對(duì)稱性導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):1、理解弧、優(yōu)弧、劣弧、圓心角等概念。掌握?qǐng)A心角、弧、弦之間的關(guān)系定理及應(yīng)用。掌握“垂直于弦的直徑平分這條弦所對(duì)的兩條弧”這一結(jié)論。2、通過教學(xué)內(nèi)容向?qū)W生滲透事物相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美,激發(fā)學(xué)生的求知欲。3、經(jīng)歷探索圓的對(duì)稱性及相關(guān)性質(zhì)的過程,培養(yǎng)學(xué)生實(shí)驗(yàn)觀察、發(fā)現(xiàn)新問題,探究和解決問題的
2024-11-23 12:22
【總結(jié)】1/3第2課時(shí)圓的對(duì)稱性課時(shí)測評(píng)方案基礎(chǔ)練知識(shí)點(diǎn)一圓是軸對(duì)稱圖形1.選擇。(1)在下面的圖形中,()一定是軸對(duì)稱圖形。A.平行四邊形B.梯形C.圓(2)將下面物體的平面圖畫在紙上,()一定是軸對(duì)稱圖形。A.茶杯B.籃球
2025-08-10 14:49
【總結(jié)】函數(shù)的對(duì)稱性一、選擇題.如果函數(shù)的圖象關(guān)于點(diǎn)A(1,2)對(duì)稱,那么 ( ?。〢.p=-2,n=4 B.p=2,n=-4C.p=-2,n=-4 D.p=2,n=4【答案】A.(山東省實(shí)驗(yàn)中學(xué)2014屆高三上學(xué)期第二次診斷性測試數(shù)學(xué)(理)試題)函數(shù)對(duì)任意的圖象關(guān)于點(diǎn)對(duì)稱,則 ( ?。〢. B. C. D.0【答案】D.(山東省桓臺(tái)第二中學(xué)2014屆
2025-06-20 03:25
【總結(jié)】..圓的對(duì)稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點(diǎn),且PA=4cm,OP=5
2025-08-05 04:44
【總結(jié)】線段、角的對(duì)稱性(2)在一張薄紙上畫一條線段AB.你能找出與線段AB的端點(diǎn)A、B距離相等的點(diǎn)嗎?這樣的點(diǎn)有多少個(gè)?做一做BA一個(gè)點(diǎn)到一條線段的兩端的距離相等,那么這個(gè)點(diǎn)在這條線段的垂直平分線上嗎?想一想BAQM線段、角的對(duì)稱性(2)因?yàn)镼A=QB,所以
【總結(jié)】一、對(duì)稱操作和對(duì)稱元素二、對(duì)稱性在化學(xué)中的應(yīng)用三、群的定義四、化學(xué)中重要的點(diǎn)群五、群的表示六、特征標(biāo)表七、群論在雜化軌道分子軌道理論的應(yīng)用八、群論在振動(dòng)光譜的應(yīng)用第一章分子的對(duì)稱性和群論初步molecularsymmetryandgrouptheory對(duì)稱性是大自然賦予眾多宏觀和微觀物體的一種
2025-05-09 21:20