freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

同濟(jì)第六版高等數(shù)學(xué)教案word版-第10章曲線積分與曲面積分-wenkub

2023-05-01 22:33:48 本頁面
 

【正文】 于是 =2p. 解 記L 所圍成的閉區(qū)域?yàn)镈. 當(dāng)(0, 0)207。”號(hào)? ) 例3. 計(jì)算, 其中D是以O(shè)(0, 0), A(1, 1), B(0, 1)為頂點(diǎn)的三角形閉區(qū)域. 分析: 要使, 只需P=0, . 解: 令P=0, , 則. 因此, 由格林公式有 . 例4 計(jì)算, 其中L為一條無重點(diǎn)、分段光滑且不經(jīng)過原點(diǎn)的連續(xù)閉曲線, L的方向?yàn)槟鏁r(shí)針方向. 解: 令, . 則當(dāng)x2+y2185。x163。y163。 (2)拋物線x=y2上從O(0, 0)到B(1, 1)的一段弧。(t), y162。 . 對(duì)坐標(biāo)的曲線積分的性質(zhì): (1) 如果把L分成L1和L2, 則 . (2) 設(shè)L是有向曲線弧, L是與L方向相反的有向曲線弧, 則 . 兩類曲線積分之間的關(guān)系: 設(shè){costi, sinti}為與Dsi同向的單位向量, 我們注意到{Dxi, Dyi}=Dsi, 所以Dxi=costiDsi, Dyi=sintiDsi, , . 即 , 或 . 其中A={P, Q}, t={cost, sint}為有向曲線弧L上點(diǎn)(x, y)處單位切向量, dr=tds={dx, dy}. 類似地有 , 或 . 其中A={P, Q, R}, T={cosa, cosb, cosg}為有向曲線弧G上點(diǎn)(x, y, z)處單們切向量, dr=Tds ={dx, dy, dz }, A t為向量A在向量t上的投影. 二、對(duì)坐標(biāo)的曲線積分的計(jì)算: 定理: 設(shè)P(x, y)、Q(x, y)是定義在光滑有向曲線L: x=j(t), y=y(t), 上的連續(xù)函數(shù), 當(dāng)參數(shù)t單調(diào)地由a變到b時(shí), 點(diǎn)M(x, y)從L的起點(diǎn)A沿L運(yùn)動(dòng)到終點(diǎn)B, 則 , . 討論: =?提示: . 定理: 若P(x, y)是定義在光滑有向曲線 L: x=j(t), y=y(t)(a163。 變力在L上所作的功近似為: 。 (4)計(jì)算定積分. 167。1), 因此 . 例2 計(jì)算半徑為R、中心角為2a的圓弧L對(duì)于它的對(duì)稱軸的轉(zhuǎn)動(dòng)慣量I(設(shè)線密度為m=1). 解 取坐標(biāo)系如圖所示, 則. 曲線L的參數(shù)方程為 x=Rcosq, y=Rsinq (a163。d), . (3)若曲G的方程為x=j(t), y=y(t), z=w(t)(a163。b), . (2)若曲線L的方程為x=j(y)(c163。0, 則曲線積分存在, 且 (ab). 證明(略) 應(yīng)注意的問題: 定積分的下限a一定要小于上限b. 討論: (1)若曲線L的方程為y=y(x)(a163。t163。 性質(zhì)3設(shè)在L上f(x, y)163。 在每一弧段Dsi上任取一點(diǎn)(xi, hi), 作和。 整個(gè)物質(zhì)曲線的質(zhì)量近似為。167。5. 知道散度與旋度的概念,并會(huì)計(jì)算。10曲線積分與曲面積分第十章 曲線積分與曲面積分教學(xué)目的:1. 理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。2. 掌握計(jì)算兩類曲線積分的方法。6. 會(huì)用曲線積分及曲面積分求一些幾何量與物理量。 對(duì)弧長的曲線積分 一、 對(duì)弧長的曲線積分的概念與性質(zhì) 曲線形構(gòu)件的質(zhì)量: 設(shè)一曲線形構(gòu)件所占的位置在xOy面內(nèi)的一段曲線弧L上, 已知曲線形構(gòu)件在點(diǎn)(x, y)處的線密度為m(x, y). 求曲線形構(gòu)件的質(zhì)量. 把曲線分成n小段, Ds1, Ds2, , Dsn(Dsi也表示弧長)。 令l=max{Ds1, Ds2, , Dsn}174。 令l=max{Ds1, Ds2, , Dsn}, 如果當(dāng)l174。g(x, y), 則 . 特別地, 有 二、對(duì)弧長的曲線積分的計(jì)算法 根據(jù)對(duì)弧長的曲線積分的定義, 如果曲線形構(gòu)件L的線密度為f(x, y), 則曲線形構(gòu)件L的質(zhì)量為 . 另一方面, 若曲線L的參數(shù)方程為x=j(t), y=y (t) (a163。b), 其中j(t)、y(t)在[a, b]上具有一階連續(xù)導(dǎo)數(shù), 且j162。x163。y163。t163。qa). 于是 =R3(asina cosa). 例3 計(jì)算曲線積分, 其中G為螺旋線x=acost、y=asint、z=kt上相應(yīng)于t從0到達(dá)2p的一段弧. 解 在曲線G上有x2+y2+z2=(a cos t)2+(a sin t)2+(k t)2=a2+k 2t 2, 并且 , 于是 . 小結(jié): 用曲線積分解決問題的步驟: (1)建立曲線積分。10. 2 對(duì)坐標(biāo)的曲線積分 一、對(duì)坐標(biāo)的曲線積分的概念與性質(zhì) 變力沿曲線所作的功: 設(shè)一個(gè)質(zhì)點(diǎn)在xOy面內(nèi)在變力F(x, y)=P(x, y)i+Q(x, y)j的作用下從點(diǎn)A沿光滑曲線弧L移動(dòng)到點(diǎn)B, 試求變力F(x, y)所作的功. 用曲線L上的點(diǎn)A=A0, A1, A2, , An1, An=B把L分成n個(gè)小弧段, 設(shè)Ak=(xk , yk), 有向線段的長度為Dsk, 它與x軸的夾角為tk , 則 (k=0, 1, 2, , n1). 顯然, 變力F(x, y)沿有向小弧段所作的功可以近似為 。 變力在L上所作的功的精確值: , 其中l(wèi)是各小弧段長度的最大值. 提示: 用Dsi={Dxi,Dyi}表示從Li的起點(diǎn)到其終點(diǎn)的的向量. 用Dsi表示Dsi的模. 對(duì)坐標(biāo)的曲線積分的定義: 定義 設(shè)函數(shù)f(x, y)在有向光滑曲線L上有界. 把L分成n個(gè)有向小弧段L1, L2, , Ln。t163。(t)}, 所以,從而 . 應(yīng)注意的問題: 下限a對(duì)應(yīng)于L的起點(diǎn), 上限b 對(duì)應(yīng)于L的終點(diǎn), a不一定小于b . 討論: 若空間曲線G由參數(shù)方程x=j(t), y =y (t), z=w(t)給出, 那么曲線積分 =?如何計(jì)算? 提示: , 其中a對(duì)應(yīng)于G的起點(diǎn), b對(duì)應(yīng)于G的終點(diǎn). 例題: , 其中L為拋物線y2=x上從點(diǎn)A(1, 1)到點(diǎn)B(1, 1)的一段弧. 解法一: 以x為參數(shù). L分為AO和OB兩部分: AO的方程為, x從1變到0。 (3)從O(0, 0)到A(1, 0), 再到R (1, 1)的有向折線OAB . 解 (1)L: y=x2, x從0變到1. 所以 . (2)L: x=y2, y從0變到1. 所以 . (3)OA: y=0, x從0變到1。j2(x), a163。y2(y), c163。0時(shí), 有. 記L 所圍成的閉區(qū)域?yàn)镈. 當(dāng)(0, 0)207。D時(shí), 由格林公式得 . 當(dāng)(0, 0)206。219。0, 167。0時(shí), 極限總存在, 則稱此極限為函數(shù)f(x, y, z)在曲面S上對(duì)面積的曲面積分或第一類曲面積分, 記作, 即 .其中f(x, y, z)叫做被積函數(shù), S叫做積分曲面. 對(duì)面積的曲面積分的存在性: 我們指出當(dāng)f(x, y, z)在光滑曲面S上連續(xù)時(shí)對(duì)面積的曲面積分是存在的. 今后總假定f(x, y, z)在S上連續(xù). 根據(jù)上述定義面密度為連續(xù)函數(shù)r(x, y, z)的光滑曲面S的質(zhì)量M可表示為r(x, y, z)在S上對(duì)面積的曲面積分: 如果S是分片光滑的我們規(guī)定函數(shù)在S上對(duì)面積的曲面積分等于函數(shù)在光滑的各片曲面上對(duì)面積的曲面積分之和. 例如設(shè)S可分成兩片光滑曲面S1及S2(記作S=S1+S2)就規(guī)定 . 對(duì)面積的曲面積分的性質(zhì): (1)設(shè)c c 2為常數(shù), 則 。 (4), 其中A為曲面S的面積. 二、對(duì)面積的曲面積分的計(jì)算 面密度為f(x, y, z)的物質(zhì)曲面的質(zhì)量為 . 另一方面, 如果S由方程z=z(x, y)給出, S在xOy面上的投影區(qū)域?yàn)镈 , 那么 曲面的面積元素為,質(zhì)量元素為. 根據(jù)元素法, 曲面的質(zhì)量為 . 因此. 化曲面積分為二重積分: 設(shè)曲面S由方程z=z(x, y)給出, S在xOy面上的投影區(qū)域?yàn)镈xy, 函數(shù)z=z(x, y)在Dxy上具有連續(xù)偏導(dǎo)數(shù), 被積函數(shù)f(x, y, z)在S上連續(xù), 則 . 如果積分曲面S的方程為y=y(z, x), Dzx為S在zOx面上的投影區(qū)域, 則函數(shù)f(x, y, z)在S上對(duì)
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1