freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中高中數(shù)學(xué)定理公式大全超全-wenkub

2023-04-22 02:22:31 本頁(yè)面
 

【正文】 距相等 115 推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116 定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117 推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118 推論2 半圓(或直徑)所對(duì)的圓周角是直角;90176。2 67 菱形判定定理1 四邊都相等的四邊形是菱形 68 菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69 正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70 正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71 定理1 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的 72 定理2 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分 73 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng) 74 等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75 等腰梯形的兩條對(duì)角線相等 76 等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77 對(duì)角線相等的梯形是等腰梯形 78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)247。49 四邊形的外角和等于360176。 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60176。 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60176。50 多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n2)180176。2 S=Lh 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果a/b=c/d,那么(a177。的圓周角所對(duì)的弦是直徑 119 推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120 定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角 121 ①直線L和⊙O相交 d<r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d>r 122 切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123 切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124 推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125 推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126 切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角 127 圓的外切四邊形的兩組對(duì)邊的和相等 128 弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129 推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130 相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等 131 推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng) 132 切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133 推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134 如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 Rr<d<R+r(R>r) ④兩圓內(nèi)切 d=Rr(R>r) ⑤兩圓內(nèi)含d<Rr(R>r) 136 定理 相交兩圓的連心線垂直平分兩圓的公共弦 137 定理 把圓分成n(n≥3): ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138 定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139 正n邊形的每個(gè)內(nèi)角都等于(n2)180176?;癁椋╪2)(k2)=4 144 弧長(zhǎng)計(jì)算公式:L=n兀R/180 145 扇形面積公式:S扇形=n兀R^2/360=LR/2 146 內(nèi)公切線長(zhǎng)= d(Rr) 外公切線長(zhǎng)= d(R+r)數(shù)學(xué)定理三角形三條邊的關(guān)系:定理:三角形兩邊的和大于第三邊 推論:三角形兩邊的差小于第三邊 三角形內(nèi)角和:三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180176。) 等腰三角形的判定:判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等 幾何語(yǔ)言: ∵∠B=∠C ∴AB=AC(等角對(duì)等邊) 推論1 三個(gè)角都相等的三角形是等邊三角形 幾何語(yǔ)言: ∵∠A=∠B=∠C ∴AB=AC=BC(三個(gè)角都相等的三角形是等邊三角形) 推論2 有一個(gè)角等于60176。) ∴AB=AC=BC(有一個(gè)角等于60176。 ∴BC= AB或者AB=2BC(在直角三角形中,如果一個(gè)銳角等于30176。 推論 任意多邊形的外角和等于360176。b)/b=(c177。b)/b=(c177?!螧=∠ADE 切線的判定和性質(zhì):切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 幾何語(yǔ)言:∵l ⊥OA,點(diǎn)A在⊙O上 ∴直線l是⊙O的切線(切線判定定理)切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)半徑 幾何語(yǔ)言:∵OA是⊙O的半徑,直線l切⊙O于點(diǎn)A ∴l(xiāng) ⊥OA(切線性質(zhì)定理)推論1 經(jīng)過(guò)圓心且垂直于切線的直徑必經(jīng)過(guò)切點(diǎn) 推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 切線長(zhǎng)定理:定理 從圓外一點(diǎn)引
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1