【總結】相似三角形與全等三角形的綜合復習友情提示:請根據課本相關內容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此迹沂崂怼浚ㄒ唬┫嗨迫切?.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【總結】二次函數(shù)綜合題一、解答題(題型注釋)1.(2014?七里河區(qū)校級三模)已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,(1)求f(x)的表達式;(2)若f(x)>a在x∈[﹣1,1]恒成立,求實數(shù)a的取值范圍.2.已知函數(shù).(1)視討論函數(shù)的單調區(qū)間;(2)若,對于,不等式都成立,求實數(shù)的取值范圍.3.(本小題滿分10分)函數(shù)f
2025-04-17 13:05
【總結】專題四二次函數(shù)之面積、周長最值問題1、如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=3.(1)求拋物線的解析式.(2)若點D(2,2)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得△BDP的周長最小,若存在,請求出點P的坐標,若不存在,請說明理由.2、如圖,已知拋物線y=-x2+bx+c與一直線相
2025-03-24 06:27
【總結】三角函數(shù)小題:5年8考.題目難度較小,主要考察公式熟練運用,平移,由圖像性質、化簡求值、解三角形等問題(含應用題),基本屬于“送分題”.考三角小題時,一般是一個考查三角恒等變形或三角函數(shù)的圖象性質,另一個考查解三角形.年份題目答案2017年14.函數(shù)()的最大值是.12016年(7)若將函數(shù)y=2sin2x的圖像向左平移個單位長度,
2025-06-26 04:57
【總結】第一部分:一次函數(shù)考點歸納:一次函數(shù):若y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù),特別的,當b=0時,一次函數(shù)就成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù),當k=0時,一次函數(shù)就成為若y=b,這時,y叫做常函數(shù)?!預與B成正比例óA=kB(k≠0)直線位置與k,b的關系:(1)k>0直線向上的方向與x軸的正方向
2025-04-17 08:34
【總結】......三角函數(shù)與解三角形 測試時間:120分鐘 滿分:150分第Ⅰ卷 (選擇題,共60分)一、選擇題(本題共12小題,每小題5分,共60分,每小題只有一個選項符合題意) 1
2025-05-15 23:44
【總結】,已知拋物線y=ax2+bx-3與x軸交于A、B兩點,與y軸交于C點,經過A、B、C三點的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為.設⊙M與y軸交于D,拋物線的頂點為E.(1)求m的值及拋物線的解析式;∴拋物線的解析式為y=x2-2x-3(2)設∠DBC=a,∠CBE=b,求sin(a-b)的值;(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點
2025-03-24 06:24
【總結】......(四)與四邊形有關的二次函數(shù)綜合題1.(07紹興)如圖,在直角坐標系中,O為原點,點A、C的坐標分別為(2,0)、(1,3).將△OAC繞AC的中點旋轉180°,點O落到點B的位置.拋物線y=ax2-
2025-03-24 05:48
【總結】....解三角形題型分類題型一:正余弦定理推論的應用題型二:三角形解的個數(shù)的確定
2025-03-25 07:46
【總結】......相似三角形的常見題型【知識要點】1.如何選擇相似三角行判定定理:①已知一個角對應相等的,常用(兩角型或夾角與一組對應邊成比例)②已知一組對邊成比例的,常用(夾角與一組對應邊成比例)③只知道邊
2025-03-25 06:31
【總結】......相似三角形知識點與經典題型知識點1有關相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應角相等,對應邊成比例,這兩個多邊形叫做相似
2025-03-25 06:32
【總結】二次函數(shù)與三角形最大面積的3種求法 一.解答題(共7小題)1.(2012?廣西)已知拋物線y=ax2+2x+c的圖象與x軸交于點A(3,0)和點C,與y軸交于點B(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上找一點D,使得點D到點B、C的距離之和最小,并求出點D的坐標;(3)在第一象限的拋物線上,是否存在一點P,使得△ABP的面積最大?若存在,求出點
2025-05-17 13:45
【總結】......全等三角形的判定題型類型一、全等三角形的判定1——“邊邊邊”例題、已知:如圖,AD=BC,AC=:∠CAD=∠DBC.(答案)證明:連接DC,在△ACD與△BDC中∴△A
2025-03-24 07:41
【總結】......全等三角形分類題型角平分線型 1.如圖,在ΔABC中,D是邊BC上一點,AD平分∠BAC,在AB上截取AE=AC,連結DE,已知DE=2cm,BD=3cm,求線段BC的長。2.
2025-03-24 07:39
【總結】........八年級上冊第二章特殊三角形一、將軍飲馬例1如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是( ?。〢、310 B、103C、9
2025-03-25 05:55