【總結(jié)】高三數(shù)學(xué)復(fù)習(xí)——立體幾何中的平行與垂直的證明一、平面的基本性質(zhì)公理1:公理2:推論1:推論2:推論3:公理3:二、空間中直線與直線的位置關(guān)系平行:相交:異面:三、平行問題1.直線與平面平行的判定與性質(zhì)定義判定定理性質(zhì)性質(zhì)定理圖形條件a∥α結(jié)
2025-04-17 13:02
【總結(jié)】公理1如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線在此平面內(nèi)。αABl),,,????????????llBAlBlA(或公理2過不在一條直線上的三點(diǎn),有且只有一個平面????????CBACBA,,,,使,有且只有一個平面三點(diǎn)不共線αABC公理3如果兩個
2025-08-05 10:54
【總結(jié)】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點(diǎn)、共線、共面問題。 (1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個平面的公共點(diǎn)(依據(jù):由點(diǎn)...
2024-11-15 05:28
【總結(jié)】高三文科數(shù)學(xué)第二輪復(fù)習(xí)資料——《立體幾何》專題一、空間基本元素:直線與平面之間位置關(guān)系的小結(jié).如下圖:條件結(jié)論線線平行線面平行面面平行垂直關(guān)系線線平行如果a∥b,b∥c,那么a∥c如果a∥α,aβ,β∩α=b,那么a∥b如果α∥β,α∩γ=a,β∩γ=b,那么a∥b如果a⊥α,b⊥α,那么a∥b線面平行如果a∥b,a
2025-03-25 06:44
【總結(jié)】俯視圖正視圖51210側(cè)視圖圖1?廣東省各地市高考數(shù)學(xué)聯(lián)考試題分類匯編第2部分:立體幾何一、選擇題:1.(廣東省珠海一中2022年2月高三第二學(xué)期第一次調(diào)研文科)如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別為棱AA1、BB1的中點(diǎn),G為棱A1B
2025-01-09 07:43
【總結(jié)】第一篇:立體幾何證明大題2 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點(diǎn),BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、...
2024-11-12 12:45
【總結(jié)】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個 B、1個
2025-03-25 02:03
【總結(jié)】1、已知正方體,是底對角線的交點(diǎn).求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-03-26 05:42
【總結(jié)】第一篇:立體幾何的證明 青于藍(lán)教育 《立體幾何》專題復(fù)習(xí)一 點(diǎn)、直線、平面之間的位置關(guān)系 第一部分:考點(diǎn)梳理 (一)空間直線、平面之間的位置關(guān)系 1、平面的基本性質(zhì) 公理1:如果一條直線...
2024-11-12 12:33
【總結(jié)】高一立體幾何平行、垂直解答題精選1.已知直三棱柱ABC-A1B1C1,點(diǎn)N在AC上且CN=3AN,點(diǎn)M,P,Q分別是AA1,A1B1,:直線PQ∥平面BMN.2.如圖,在正方形ABCD-A1B1C1D1中,E,F(xiàn),M分別是棱B1C1,BB1,C1D1的中點(diǎn),是否存在過點(diǎn)E,M且與平面A1FC平行的平面?若存在,請作出并證明;若不存在,請說明理由
2025-03-26 05:39
【總結(jié)】高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
2025-04-04 05:14
【總結(jié)】專題:空間角一、基礎(chǔ)梳理(1)異面直線所成的角的范圍:。(2)異面直線垂直:如果兩條異面直線所成的角是直角,則叫兩條異面直線垂直。兩條異面直線垂直,記作。(3)求異面直線所成的角的方法:(1)通過平移,在一條直線上(或空間)找一點(diǎn),過該點(diǎn)作另一(或兩條)直線的平行線;(2)找出與一條直線平行且與另一條相交的直線,那么這兩條相交直線所成的角即為所求。平移技巧
2025-04-17 07:49
【總結(jié)】第一篇:高中數(shù)學(xué)立體幾何證明公式 線線平行→線面平行如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。 線面平行→線線平行如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這...
2025-10-18 00:25
【總結(jié)】高考數(shù)學(xué)專題復(fù)習(xí):立體幾何專題(理)一、山東省高考試題分析高考試卷中,立體幾何把考查的立足點(diǎn)放在空間圖形上,突出對空間概念和空間想象能力的考查。立體幾何的基礎(chǔ)是對點(diǎn)、線、面的位置關(guān)系的討論和研究,進(jìn)而討論幾何體。高考命題時,突出空間圖形的特點(diǎn),側(cè)重于直線與直線、直線與平面、兩個平面的位置的關(guān)系以及空間角、面積、體積的計算的考查,以便檢測考生立體幾何的知識水平和能力。高考試題中題型
2025-06-07 18:09
【總結(jié)】A1ED1C1B1DCBA1、如圖,在正方體中,是的中點(diǎn),求證:平面。2、ABCD-A1B1C1D1是正四棱柱,E是棱BC的中點(diǎn)。求證:BD1//平面C1DE3、四棱錐P-ABCD中,底面ABCD是矩形,M、N分別是AB、PC的中點(diǎn),求證:MN∥平面PA
2025-03-25 06:43