【總結(jié)】概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié)三、數(shù)列一.?dāng)?shù)列的概念:數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N*(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的解析式。如(1)已知,則在數(shù)列的最大項(xiàng)為__(答:);(2)數(shù)列的通項(xiàng)為,其中均為正數(shù),則與的大小關(guān)系為___(答:);(3)已知數(shù)列中,,且是遞增數(shù)列,求實(shí)數(shù)的取值范圍(答:);(4)一
2025-04-17 13:06
【總結(jié)】完美WORD格式資料分?jǐn)?shù)乘法與分?jǐn)?shù)裂項(xiàng)法【專題解析】我們知道,分?jǐn)?shù)乘法的運(yùn)算是這樣的:分?jǐn)?shù)乘分?jǐn)?shù),應(yīng)該分子乘分子,分母乘分母(當(dāng)然能約分的最好先約分在計(jì)算)。分?jǐn)?shù)乘法中有許多十分有趣的現(xiàn)象與技巧,它主要通過些運(yùn)算定律、性質(zhì)和一些技巧性的方法,達(dá)
2025-06-27 13:21
【總結(jié)】精品字里行間精品文檔學(xué)而思課程配套練習(xí)題集分?jǐn)?shù)裂項(xiàng)綜合練習(xí)題1、夯實(shí)基礎(chǔ):1、比較:與;與;與的大小關(guān)系,通過觀察你發(fā)現(xiàn)了什么規(guī)律?2、計(jì)算:3、計(jì)算:4、求的值。5、計(jì)算:學(xué)而思課程配套練習(xí)題集2、拓展提高:6、計(jì)算:7、
2025-03-24 12:25
【總結(jié)】分?jǐn)?shù)裂項(xiàng)計(jì)算本講知識(shí)點(diǎn)屬于計(jì)算大板塊內(nèi)容,其實(shí)分?jǐn)?shù)裂項(xiàng)很大程度上是發(fā)現(xiàn)規(guī)律、利用公式的過程,可以分為觀察、改造、運(yùn)用公式等過程。很多時(shí)候裂項(xiàng)的方式不易找到,需要進(jìn)行適當(dāng)?shù)淖冃危蛘呦冗M(jìn)行一部分運(yùn)算,使其變得更加簡單明了。本講是整個(gè)奧數(shù)知識(shí)體系中的一個(gè)精華部分,列項(xiàng)與通項(xiàng)歸納是密不可分的,所以先找通項(xiàng)是裂項(xiàng)的前提,是能力的體現(xiàn),對學(xué)生要求較高。分?jǐn)?shù)裂項(xiàng)一、“裂差”型運(yùn)算
2025-06-25 19:24
【總結(jié)】 (經(jīng)典)講義:等比數(shù)列及其前n項(xiàng)和 1.等比數(shù)列的定義 如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示. ...
2025-11-08 22:29
【總結(jié)】分?jǐn)?shù)裂項(xiàng)求和方法總結(jié)(一)用裂項(xiàng)法求型分?jǐn)?shù)求和分析:因?yàn)椋剑╪為自然數(shù))所以有裂項(xiàng)公式:(二)用裂項(xiàng)法求型分?jǐn)?shù)求和分析:型。(n,k均為自然數(shù))因?yàn)樗裕ㄈ┯昧秧?xiàng)法求型分?jǐn)?shù)求和分析:型(n,k均為自然數(shù))==所以=(四)用裂項(xiàng)法求型分?jǐn)?shù)求和分析:(n,k均為自然數(shù))
2025-08-05 03:23
【總結(jié)】海豚教育個(gè)性化簡案學(xué)生姓名:年級(jí):科目:授課日期:月日上課時(shí)間:時(shí)分------時(shí)分合計(jì):小時(shí)教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會(huì)通過作差法
2025-08-04 10:15
【總結(jié)】等比數(shù)列·例題解析【例1】已知Sn是數(shù)列{an}的前n項(xiàng)和,Sn=pn(p∈R,n∈N*),那么數(shù)列{an}.[]A.是等比數(shù)列B.當(dāng)p≠0時(shí)是等比數(shù)列C.當(dāng)p≠0,p≠1時(shí)是等比數(shù)列D.不是等比數(shù)列分析由Sn=pn(n∈N*),有a1=S1=p,并且當(dāng)
2025-11-02 05:30
【總結(jié)】各地模擬試題(數(shù)列)1、設(shè)數(shù)列??na的前n項(xiàng)和為nS.已知1aa?,13nnnaS???,*n?N.(Ⅰ)設(shè)3nnnbS??,求數(shù)列??nb的通項(xiàng)公式;(Ⅱ)若1nnaa?≥,*n?N,求a的取值范圍.2、設(shè)數(shù)列??na的前n項(xiàng)和為nS,已知??21nnnbabS??
2025-07-22 15:45
【總結(jié)】各地模擬試題(數(shù)列)1、設(shè)數(shù)列的前項(xiàng)和為.已知,,.(Ⅰ)設(shè),求數(shù)列的通項(xiàng)公式;(Ⅱ)若,,求的取值范圍.2、設(shè)數(shù)列的前項(xiàng)和為,已知(Ⅰ)證明:當(dāng)時(shí),是等比數(shù)列;(Ⅱ)求的通項(xiàng)公式3、在數(shù)列中,,.(Ⅰ)設(shè).證明:數(shù)列是等差數(shù)列;(Ⅱ)求數(shù)列的前項(xiàng)和.4、已知各項(xiàng)均為正數(shù)的數(shù)列{}的前n項(xiàng)和滿足,且(1)求{}的通項(xiàng)公式
2025-06-07 19:16
【總結(jié)】......數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項(xiàng)公式的常用方法.教學(xué)重點(diǎn):運(yùn)用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式.教學(xué)難點(diǎn):構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式的方法.教學(xué)時(shí)數(shù):2課
2025-04-17 04:59
【總結(jié)】......一、直接(或轉(zhuǎn)化)由等差、等比數(shù)列的求和公式求和例1(07高考山東文18)設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.(1)求數(shù)列的等差數(shù)列.(2)令求數(shù)列的前項(xiàng)和.
2025-03-25 02:52
【總結(jié)】新夢想教育數(shù)列求和的基本方法和技巧利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、自然數(shù)列4、自然數(shù)平方組成的數(shù)列[例1]已知,求的前n項(xiàng)和.解:由由等比
2025-04-17 08:19
【總結(jié)】《數(shù)列》知識(shí)點(diǎn)歸納及例題分析1、數(shù)列的概念:1.歸納通項(xiàng)公式:注重經(jīng)驗(yàn)的積累:(1)0,-3,8,-15,24,.......(2)21,211,2111,21111,......(3)2.與的關(guān)系:注意:?強(qiáng)調(diào)分開,注意下標(biāo);?與之間的互化(求通項(xiàng))例2:已知數(shù)列的前項(xiàng)和,求.3.數(shù)列的函數(shù)性質(zhì):(1)單調(diào)性的判定與證明:?定義法;?函數(shù)單
2025-06-25 02:13
【總結(jié)】專題:數(shù)列的通項(xiàng)求通項(xiàng)的常見問題:1、特殊數(shù)列的通項(xiàng)2、構(gòu)造特殊數(shù)列,間接求通項(xiàng)3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項(xiàng)公式?!夯仡櫋?/span>
2025-10-31 13:17