【總結(jié)】高三第一輪復(fù)習(xí)《必修五第二章數(shù)列》?第一節(jié)數(shù)列的概念與簡(jiǎn)單表示法在教學(xué)中要充分發(fā)揮學(xué)生的主體地位,盡量讓學(xué)生獨(dú)立完成包括例題在內(nèi)的題目,教師在于對(duì)方法和規(guī)律的總結(jié),在于引導(dǎo)。知識(shí)點(diǎn)考試大綱說明考情分析數(shù)列的概念和簡(jiǎn)單表示種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式)
2025-08-07 10:50
【總結(jié)】數(shù)列通項(xiàng)公式的求法一、近6年全國(guó)卷(2009——2014)求數(shù)列通項(xiàng)公式的試題概覽年份試題特點(diǎn)或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國(guó)卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-06-26 05:32
【總結(jié)】......數(shù)列通項(xiàng)公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會(huì)出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項(xiàng)公式的求法是??嫉囊粋€(gè)知識(shí)點(diǎn),一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項(xiàng)公式的
2025-06-26 05:23
【總結(jié)】等比數(shù)列的通項(xiàng)公式(2)陽光國(guó)際學(xué)校高中部數(shù)學(xué)組復(fù)習(xí)一.等比數(shù)列的定義二.等比數(shù)列的通項(xiàng)公式an=a1qn-1q0時(shí),數(shù)列各項(xiàng)同號(hào)q0時(shí),數(shù)列各項(xiàng)正負(fù)相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-12 16:41
【總結(jié)】高考數(shù)列通項(xiàng)公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項(xiàng)公式的方法……………………………………………………………12求通項(xiàng)公式方法選擇策略…………………………………………………123求通項(xiàng)公式注意的問題………………………………………………………13參考文獻(xiàn)…………………………………………………………………
2025-04-17 13:06
【總結(jié)】求通項(xiàng)公式專題一、利用與關(guān)系求1-1已知數(shù)列的前項(xiàng)和,求通項(xiàng)公式例1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)變式訓(xùn)練1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)1-2已知與的關(guān)系式,求例2 已知數(shù)列的前項(xiàng)和,求的通項(xiàng)公式..變式訓(xùn)練2已知數(shù)列的前項(xiàng)和滿足,求的通項(xiàng)公式..變式訓(xùn)練3
2025-03-25 02:53
【總結(jié)】數(shù)列知識(shí)點(diǎn)及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項(xiàng):成等差數(shù)列前項(xiàng)和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個(gè)成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項(xiàng)和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項(xiàng)為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負(fù)分界項(xiàng),即:當(dāng),解
2025-08-05 09:35
【總結(jié)】數(shù)列的概念、通項(xiàng)公式和遞推公式期末復(fù)習(xí)一、數(shù)列的概念:數(shù)列.項(xiàng)是關(guān)于項(xiàng)數(shù)的一種特殊的函數(shù)關(guān)系,只是定義域是自小到大的正整數(shù)而已.:通項(xiàng)公式法,遞推公式法,前n項(xiàng)和法,和圖像法等.(圖像是自變量取正整數(shù)的一些孤立的點(diǎn))二、數(shù)列的通項(xiàng)公式:???Nnnfananannn),(:.
2024-11-09 03:30
【總結(jié)】“數(shù)列通項(xiàng)公式及數(shù)列求和”課例一、設(shè)計(jì)理念首先通過解剖導(dǎo)學(xué)案,讓學(xué)生經(jīng)歷知識(shí)網(wǎng)絡(luò)的自主構(gòu)建,然后在匯報(bào)和例題解法展示活動(dòng)中進(jìn)行知識(shí)網(wǎng)絡(luò)的完善和思想、方法的總結(jié)提升,以導(dǎo)學(xué)案為載體、立足過程、增強(qiáng)解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學(xué)的一個(gè)重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會(huì)出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何
2025-04-17 01:43
【總結(jié)】等比數(shù)列的通項(xiàng)公式(教案)一、教學(xué)目標(biāo)1、掌握等比數(shù)列的通項(xiàng)公式,并能夠用公式解決一些相關(guān)問題。2、掌握由等比數(shù)列的通項(xiàng)公式推導(dǎo)出的相關(guān)結(jié)論。二、教學(xué)重點(diǎn)、難點(diǎn)各種結(jié)論的推導(dǎo)、理解、應(yīng)用。三、教學(xué)過程1、導(dǎo)入復(fù)習(xí)等比數(shù)列的定義:通項(xiàng)公式:用歸納猜測(cè)的方法得到,用累積法證明2、新知探索例1在等比數(shù)列中,(1)
2025-04-17 08:21
【總結(jié)】等比數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用表示,2a…,第n項(xiàng)用表示,na…,數(shù)列的一般形式可以寫成:,1
2024-11-11 08:58
【總結(jié)】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的差an-an-1為常數(shù)d數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的比為常數(shù)q(q≠0)專有名詞d為公差q為公比通項(xiàng)公式an=a1+(n-1)d
【總結(jié)】高考遞推數(shù)列題型分類歸納解析各種數(shù)列問題在很多情形下,就是對(duì)數(shù)列通項(xiàng)公式的求解。特別是在一些綜合性比較強(qiáng)的數(shù)列問題中,數(shù)列通項(xiàng)公式的求解問題往往是解決數(shù)列難題的瓶頸。本文總結(jié)出幾種求解數(shù)列通項(xiàng)公式的方法,希望能對(duì)大家有幫助。類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例:已知數(shù)列滿足,,求。解:由條件知:分別令,代入上式得個(gè)等式累加之,即
2025-04-07 23:13
【總結(jié)】等差數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用表示,2a…,第n項(xiàng)用表示,na…,數(shù)
2024-11-11 21:08
【總結(jié)】等比數(shù)列的定義)2(?n)1(?nqaann??12.qaann??1或1.qaaaaaaaaaann????????145342312如果等比數(shù)列{an}的首項(xiàng)是a1,公比是q,則11??
2025-07-25 15:34