【摘要】專題數(shù)列通項(xiàng)公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項(xiàng)的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式解:設(shè)數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點(diǎn)評(píng):利用定義法求數(shù)列通項(xiàng)時(shí)要注意不用錯(cuò)定義,設(shè)法求出首項(xiàng)與公差(公
2025-03-25 02:53
【摘要】1求數(shù)列通項(xiàng)公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式求解。例1.寫出下列數(shù)列的通項(xiàng)公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2024-10-21 19:02
【摘要】數(shù)列求通項(xiàng)及通項(xiàng)的求法●目標(biāo)地位:數(shù)列的通項(xiàng)是數(shù)列的核心。●方法歸類:a、運(yùn)用求數(shù)列通項(xiàng)公式例1.已知數(shù)列的前項(xiàng)和為,,,求。b、⑴已知關(guān)系式,可利用迭加法或迭代法;例1.已知數(shù)列中,,求數(shù)列的通項(xiàng)公式;例2.?dāng)?shù)列中,,,求。c、已知關(guān)系式,可利用迭乘法.:,求求數(shù)列的通項(xiàng)公式;
2025-08-17 06:54
【摘要】及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用
2024-11-09 03:51
2024-11-12 18:09
【摘要】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復(fù)雜,顯示出很大的反差。使得在學(xué)習(xí)數(shù)列時(shí)感到很困難。同時(shí),數(shù)列題目種類繁多,很難歸類。為了便于研究數(shù)列問題,找出其中某些常見數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見的數(shù)列通項(xiàng)公式的求法作以下歸類。.一、作差求和法m例1在數(shù)列{}中,,,求通項(xiàng)公式.解:原遞推式可化為:則,……,逐項(xiàng)相加
2025-08-23 21:37
【摘要】用不動(dòng)點(diǎn)法求遞推數(shù)列(a2+c2≠0)的通項(xiàng)儲(chǔ)炳南(安徽省岳西中學(xué)246600)1.通項(xiàng)的求法為了求出遞推數(shù)列的通項(xiàng),我們先給出如下兩個(gè)定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動(dòng)點(diǎn)方程,其根稱為函數(shù)的不動(dòng)點(diǎn).下面分兩種情況給出遞推數(shù)列通項(xiàng)的求解通法.(1)當(dāng)c=0,時(shí),由,記,,則有(k≠0),∴數(shù)列
2025-06-23 14:23
【摘要】......求數(shù)列通項(xiàng)公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。 解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差
【摘要】用心愛心專心遞推數(shù)列通項(xiàng)求解方法舉隅類型一:1nnapaq???(1p?)思路1(遞推法):??123()nnnnapaqppaqqpppaqqq?????????????????……121(1npaqpp??????…211)
2025-08-26 00:31
【摘要】數(shù)列求和方法等差數(shù)列、等比數(shù)列的求和是高考??嫉膬?nèi)容之一,一般數(shù)列求和的基本思想是將其通項(xiàng)變形,化歸為等差數(shù)列或等比數(shù)列的求和問題,或利用代數(shù)式的對(duì)稱性,采用消元等方法來求和.下面我們結(jié)合具體實(shí)例來研究求和的方法.一、直接求和法(或公式法)將數(shù)列轉(zhuǎn)化為等差或等比數(shù)列,直接運(yùn)用等差或等比數(shù)列的前n項(xiàng)和公式求得.例1求.解:原式. 由等差數(shù)列求和公式,得原式.二、
2025-07-23 16:03
【摘要】:——直接利用等差或等比數(shù)列的定義求通項(xiàng)。特征:適應(yīng)于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式.變式練習(xí):,求的通項(xiàng)公式2.在等比數(shù)列中,,且為和的等差中項(xiàng),求數(shù)列的首項(xiàng)、公比及前項(xiàng)和.求數(shù)列的通項(xiàng)可用公式求解。特征:
2025-06-17 07:01
【摘要】......環(huán)球雅思學(xué)科教師輔導(dǎo)學(xué)案輔導(dǎo)科目:數(shù)學(xué)年級(jí):高一學(xué)科教師:課時(shí)數(shù):3授課類型等差數(shù)列與通項(xiàng)公式教學(xué)目的掌
2025-06-25 04:00
【摘要】數(shù)列的通項(xiàng)公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項(xiàng)公式,便可以研究數(shù)列的性質(zhì)及前n項(xiàng)和等,所以求數(shù)列的通項(xiàng)公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項(xiàng)公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項(xiàng)公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2024-11-18 18:02
【摘要】等差數(shù)列通項(xiàng)公式教案一教學(xué)類型新知課二教學(xué)目標(biāo) ,使學(xué)生加深對(duì)等差數(shù)列通項(xiàng)公式的認(rèn)識(shí),能解決一些簡(jiǎn)單的問題; 、項(xiàng)數(shù)、公差、首項(xiàng),使學(xué)生進(jìn)一步體會(huì)方程思想; 3.培養(yǎng)學(xué)生觀察能力,進(jìn)一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí).三教學(xué)重點(diǎn),難點(diǎn).2通項(xiàng)公式的理解與掌握;教學(xué)難點(diǎn)是掌握公式的推導(dǎo)過程以及對(duì)公式靈活運(yùn)用.四教學(xué)用具實(shí)物投影儀,多
2025-07-25 04:58
【摘要】待定系數(shù)法求特殊數(shù)列的通項(xiàng)公式靖州一中 蔣利在高中數(shù)學(xué)教學(xué)中,經(jīng)常碰到一些特殊數(shù)列求通項(xiàng)公式,而這些問題在高考和競(jìng)賽中也經(jīng)常出現(xiàn),是一類廣泛而復(fù)雜的問題,歷屆高考常以這類問題作為一道重大的試題。因此,在教學(xué)中,針對(duì)這類問題,提供一些特殊數(shù)列求通項(xiàng)公式范例,幫助同學(xué)們?nèi)嬲莆者@類問題及求解的一般方法。 求數(shù)列的通項(xiàng)公式,最為廣泛的的辦法是:把所給的遞推關(guān)系變形,使之成為某個(gè)等差數(shù)列
2025-06-25 16:50