【總結(jié)】北京八中2021屆高三數(shù)學(xué)(理科)復(fù)習(xí)函數(shù)作業(yè)2(單調(diào)性與最值1)1、下列函數(shù)中,既是偶函數(shù)又在(0,)??單調(diào)遞增的函數(shù)是()A.3yx?B.||1yx??C.21yx???D.||2xy??2、函數(shù)()fx的定義域?yàn)镽,(1)2f??,對(duì)任意xR?,'()2f
2024-11-28 18:55
【總結(jié)】│函數(shù)的單調(diào)性與最值│知識(shí)梳理知識(shí)梳理│知識(shí)梳理│知識(shí)梳理│知識(shí)梳理│要點(diǎn)探究要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究
2025-07-20 05:00
【總結(jié)】函數(shù)的單調(diào)性(一)一、選擇題:1.在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是 () A.y=2x+1 B.y=3x2+1 C.y= D.y=2x2+x+12.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞]上是增函數(shù),在區(qū)間(-∞,-2)上是減函數(shù),則f(1)等于 () A.-7 B.1 C.17 D.259.函數(shù)的遞增區(qū)間依次
2025-06-18 20:32
【總結(jié)】函數(shù)單調(diào)性說課稿《函數(shù)的單調(diào)性》說課稿宋桂霞我說課的課題是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修1》第二章第三節(jié)——函數(shù)的單調(diào)性。我將根據(jù)新課標(biāo)的理念和高一學(xué)生的認(rèn)知特點(diǎn)設(shè)計(jì)本節(jié)課的教學(xué)。我從下面三個(gè)方面闡述我對(duì)這節(jié)課的理解和教學(xué)設(shè)計(jì)。一、教材分析1、教材內(nèi)容本節(jié)課是北師大版(必修一)第二章函數(shù)第三節(jié)——函數(shù)的單調(diào)性,本節(jié)
2025-04-16 23:39
【總結(jié)】第一篇:高一數(shù)學(xué)《函數(shù)的單調(diào)性與最值》第二課時(shí)教案 函數(shù)的單調(diào)性與最值 學(xué)習(xí)目標(biāo): ,它是函數(shù)單調(diào)性的應(yīng)用。。 。知識(shí)重現(xiàn) 1、一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足:(1)...
2024-11-04 12:50
【總結(jié)】函數(shù)的單調(diào)性學(xué)習(xí)目標(biāo)了解函數(shù)單調(diào)性的概念掌握判斷一些簡單函數(shù)單調(diào)性的方法教學(xué)方法講解法、練習(xí)法相結(jié)合本節(jié)重點(diǎn),難點(diǎn)函數(shù)單調(diào)性的定義證明函數(shù)單調(diào)性的方法步驟y=x2從圖象可以看到:圖象在y軸的右側(cè)部分是上升的,也就是說,當(dāng)x在區(qū)間[0,+)上取值時(shí),隨著x的增大
2025-08-04 14:16
【總結(jié)】一、課題:函數(shù)的單調(diào)性二、教學(xué)目標(biāo)1、知識(shí)目標(biāo):從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2、能力目標(biāo):通過對(duì)函數(shù)單調(diào)性定義的探究,培養(yǎng)學(xué)生滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3、情感目標(biāo):通過對(duì)單調(diào)性的探究培養(yǎng)學(xué)生細(xì)心觀
2025-06-07 16:29
【總結(jié)】第二章函數(shù)與基本初等函數(shù)第二章第二節(jié)函數(shù)的單調(diào)性與最值高考目標(biāo)導(dǎo)航課前自主導(dǎo)學(xué)課堂典例講練3課后強(qiáng)化作業(yè)4高考目標(biāo)導(dǎo)航考綱要求1.理解函數(shù)的單調(diào)性、最大值、最小值及其幾何意義.2.會(huì)運(yùn)用函數(shù)圖像理解和研究函數(shù)的單調(diào)性、最值.命題分析函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),
2024-11-18 18:07
【總結(jié)】對(duì)數(shù)函數(shù)單調(diào)性練習(xí)一、填空題=loga(3-ax)在[0,2)上是關(guān)于x的減函數(shù),則實(shí)數(shù)a的取值范圍為(x)=log2(x2-ax-4)在區(qū)間[2,4]上是增函數(shù),則實(shí)數(shù)a的范圍是=log2(x2-ax-a)定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是(x)=loga(ax2-x+3)在[2,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是
2025-06-24 15:04
【總結(jié)】教材分析本節(jié)的教學(xué)內(nèi)容屬導(dǎo)數(shù)的應(yīng)用,是在學(xué)生學(xué)習(xí)了導(dǎo)數(shù)的概念、幾何意義、計(jì)算的基礎(chǔ)上學(xué)習(xí)的內(nèi)容,學(xué)好它既可加深對(duì)導(dǎo)數(shù)的理解,,應(yīng)使學(xué)生體驗(yàn)到,用導(dǎo)數(shù)判斷單調(diào)性要比用
2025-06-08 00:17
【總結(jié)】函數(shù)的單調(diào)性1、函數(shù)的單調(diào)性:一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間MA,如果取區(qū)間M中的任意兩個(gè)值x1、x2,則當(dāng)改變量△x=x2—x10時(shí),有△y=f(x2)—f(x1) ,那么就稱函數(shù)y=f(x)在區(qū)間M上是減函數(shù);如果一個(gè)函數(shù)在某個(gè)區(qū)間M上是增函數(shù)或者是減函數(shù),就說函數(shù)在區(qū)間M上具有 ,區(qū)間M叫做 。2、復(fù)合函數(shù)y=f[φ(x)]在這區(qū)間上是 ;若y
2025-06-16 08:21
【總結(jié)】復(fù)合函數(shù)單調(diào)性的求法與含參數(shù)問題若,又,且值域與定義域的交集不空,則函數(shù)叫的復(fù)合函數(shù),其中叫外層函數(shù),叫內(nèi)層函數(shù),簡而言之,所謂復(fù)合函數(shù)就是由一些初等函數(shù)復(fù)合而成的函數(shù)。對(duì)于有關(guān)復(fù)合函數(shù)定義域問題我們可以分成以下幾種常見題型:(一)求復(fù)合函數(shù)表達(dá)式例1、(1)設(shè)f(x)=2x-3g(x)=x2+2求f[g(x)](或g[f(x)])。(2)已知:f(x)=
2025-03-25 00:18
【總結(jié)】含有參數(shù)的函數(shù)單調(diào)性問題教學(xué)設(shè)計(jì)胡蓉一、教材地位導(dǎo)數(shù)在新課標(biāo)卷中以壓軸題的形式考察,近五年最后一道壓軸題都是含有參數(shù)的函數(shù)題,熟悉含參函數(shù)單調(diào)性問題的求解是非常重要的,它是解決含參函數(shù)極值、最值、零點(diǎn)等問題的基礎(chǔ)。二、教學(xué)背景與教學(xué)目標(biāo)筆者所教學(xué)生為重點(diǎn)中學(xué)文科學(xué)生,己經(jīng)學(xué)完導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用三個(gè)課時(shí),但是相對(duì)而言還比較零散,缺少整體聯(lián)系但又具有一定的知識(shí)遷移能力。
2025-03-24 23:42
【總結(jié)】函數(shù)的值域與函數(shù)的單調(diào)性我們將復(fù)習(xí)函數(shù)的值域與函數(shù)的單調(diào)性兩部分內(nèi)容.通過本專題的學(xué)習(xí),同學(xué)們應(yīng)掌握求函數(shù)值域的常用方法;掌握函數(shù)單調(diào)性的定義,能用定義判定函數(shù)的單調(diào)性;會(huì)判斷復(fù)合函數(shù)的單調(diào)性;了解利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的一般方法.[知識(shí)要點(diǎn)]一.函數(shù)的值域求函數(shù)值域的方法主要有:配方法、判別式法、換元法、基本不等式法、圖象法,利用函數(shù)的單調(diào)性、利
2025-05-16 03:08
【總結(jié)】最值問題“最值”問題大都?xì)w于兩類基本模型:Ⅰ、歸于函數(shù)模型:即利用一次函數(shù)的增減性和二次函數(shù)的對(duì)稱性及增減性,確定某范圍內(nèi)函數(shù)的最大或最小值Ⅱ、歸于幾何模型,這類模型又分為兩種情況:(1)歸于“兩點(diǎn)之間的連線中,線段最短”。凡屬于求“變動(dòng)的兩線段之和的最小值”時(shí),大都應(yīng)用這一模型。(2)歸于“三角形兩邊之差小于第三邊”凡屬于求“變動(dòng)的兩線段之差的最大值”時(shí),大
2025-04-04 03:48